% % This file was created by the TYPO3 extension % bib % --- Timezone: CEST % Creation date: 2024-07-03 % Creation time: 15-23-16 % --- Number of references % 4 % @Article { 2023_lamberts_metrics-sok, title = {SoK: Evaluations in Industrial Intrusion Detection Research}, journal = {Journal of Systems Research}, year = {2023}, month = {10}, day = {31}, volume = {3}, number = {1}, abstract = {Industrial systems are increasingly threatened by cyberattacks with potentially disastrous consequences. To counter such attacks, industrial intrusion detection systems strive to timely uncover even the most sophisticated breaches. Due to its criticality for society, this fast-growing field attracts researchers from diverse backgrounds, resulting in 130 new detection approaches in 2021 alone. This huge momentum facilitates the exploration of diverse promising paths but likewise risks fragmenting the research landscape and burying promising progress. Consequently, it needs sound and comprehensible evaluations to mitigate this risk and catalyze efforts into sustainable scientific progress with real-world applicability. In this paper, we therefore systematically analyze the evaluation methodologies of this field to understand the current state of industrial intrusion detection research. Our analysis of 609 publications shows that the rapid growth of this research field has positive and negative consequences. While we observe an increased use of public datasets, publications still only evaluate 1.3 datasets on average, and frequently used benchmarking metrics are ambiguous. At the same time, the adoption of newly developed benchmarking metrics sees little advancement. Finally, our systematic analysis enables us to provide actionable recommendations for all actors involved and thus bring the entire research field forward.}, tags = {internet-of-production, rfc}, url = {https://www.comsys.rwth-aachen.de/fileadmin/papers/2023/2023-lamberts-metrics-sok.pdf}, publisher = {eScholarship Publishing}, ISSN = {2770-5501}, DOI = {10.5070/SR33162445}, reviewed = {1}, author = {Lamberts, Olav and Wolsing, Konrad and Wagner, Eric and Pennekamp, Jan and Bauer, Jan and Wehrle, Klaus and Henze, Martin} } @Inproceedings { 2023-wagner-lcn-repel, title = {Retrofitting Integrity Protection into Unused Header Fields of Legacy Industrial Protocols}, year = {2023}, month = {10}, url = {https://www.comsys.rwth-aachen.de/fileadmin/papers/2023/2023-wagner-repel.pdf}, publisher = {IEEE}, booktitle = {48th IEEE Conference on Local Computer Networks (LCN), Daytona Beach, Florida, US}, event_place = {Daytona Beach, Florida, US}, event_name = {IEEE Conference on Local Computer Networks (LCN)}, event_date = {Oktober 1-5, 2023}, state = {accepted}, language = {en}, reviewed = {1}, author = {Wagner, Eric and Rothaug, Nils and Wolsing, Konrad and Bader, Lennart and Wehrle, Klaus and Henze, Martin} } @Inproceedings { 2023-wolsing-xluuvlab, title = {XLab-UUV – A Virtual Testbed for Extra-Large Uncrewed Underwater Vehicles}, year = {2023}, month = {10}, abstract = {Roughly two-thirds of our planet is covered with water, and so far, the oceans have predominantly been used at their surface for the global transport of our goods and commodities. Today, there is a rising trend toward subsea infrastructures such as pipelines, telecommunication cables, or wind farms which demands potent vehicles for underwater work. To this end, a new generation of vehicles, large and Extra-Large Unmanned Underwater Vehicles (XLUUVs), is currently being engineered that allow for long-range, remotely controlled, and semi-autonomous missions in the deep sea. However, although these vehicles are already heavily developed and demand state-of-the-art communi- cation technologies to realize their autonomy, no dedicated test and development environments exist for research, e.g., to assess the implications on cybersecurity. Therefore, in this paper, we present XLab-UUV, a virtual testbed for XLUUVs that allows researchers to identify novel challenges, possible bottlenecks, or vulnerabilities, as well as to develop effective technologies, protocols, and procedures.}, keywords = {Maritime Simulation Environment, XLUUV, Cyber Range, Autonomous Shipping, Operational Technology}, url = {https://www.comsys.rwth-aachen.de/fileadmin/papers/2023/2023-wolsing-xluuvlab.pdf}, publisher = {IEEE}, booktitle = {1st IEEE LCN Workshop on Maritime Communication and Security (MarCaS)}, event_place = {Daytona Beach, Florida, USA}, event_name = {1st IEEE LCN Workshop on Maritime Communication and Security (MarCaS)}, event_date = {Oktober 1-5, 2023}, state = {accepted}, language = {en}, DOI = {10.1109/LCN58197.2023.10223405}, reviewed = {1}, author = {Wolsing, Konrad and Saillard, Antoine and Padilla, Elmar and Bauer, Jan} } @Inproceedings { 2023_wolsing_ensemble, title = {One IDS is not Enough! Exploring Ensemble Learning for Industrial Intrusion Detection}, year = {2023}, month = {9}, day = {25}, volume = {14345}, pages = {102-122}, abstract = {Industrial Intrusion Detection Systems (IIDSs) play a critical role in safeguarding Industrial Control Systems (ICSs) against targeted cyberattacks. Unsupervised anomaly detectors, capable of learning the expected behavior of physical processes, have proven effective in detecting even novel cyberattacks. While offering decent attack detection, these systems, however, still suffer from too many False-Positive Alarms (FPAs) that operators need to investigate, eventually leading to alarm fatigue. To address this issue, in this paper, we challenge the notion of relying on a single IIDS and explore the benefits of combining multiple IIDSs. To this end, we examine the concept of ensemble learning, where a collection of classifiers (IIDSs in our case) are combined to optimize attack detection and reduce FPAs. While training ensembles for supervised classifiers is relatively straightforward, retaining the unsupervised nature of IIDSs proves challenging. In that regard, novel time-aware ensemble methods that incorporate temporal correlations between alerts and transfer-learning to best utilize the scarce training data constitute viable solutions. By combining diverse IIDSs, the detection performance can be improved beyond the individual approaches with close to no FPAs, resulting in a promising path for strengthening ICS cybersecurity.}, note = {Lecture Notes in Computer Science (LNCS), Volume 14345}, keywords = {Intrusion Detection; Ensemble Learning; ICS}, tags = {internet-of-production, rfc}, url = {https://jpennekamp.de/wp-content/papercite-data/pdf/wkw+23.pdf}, publisher = {Springer}, booktitle = {Proceedings of the 28th European Symposium on Research in Computer Security (ESORICS '23), September 25-29, 2023, The Hague, The Netherlands}, event_place = {The Hague, The Netherlands}, event_name = {28th European Symposium on Research in Computer Security (ESORICS '23)}, event_date = {September 25-29, 2023}, ISBN = {978-3-031-51475-3}, ISSN = {0302-9743}, DOI = {10.1007/978-3-031-51476-0_6}, reviewed = {1}, author = {Wolsing, Konrad and Kus, Dominik and Wagner, Eric and Pennekamp, Jan and Wehrle, Klaus and Henze, Martin} }