This file was created by the TYPO3 extension bib --- Timezone: CEST Creation date: 2024-07-04 Creation time: 09-26-05 --- Number of references 3 inproceedings 2021_reuter_demo Demo: Traffic Splitting for Tor — A Defense against Fingerprinting Attacks 2021 9 14 Website fingerprinting (WFP) attacks on the anonymity network Tor have become ever more effective. Furthermore, research discovered that proposed defenses are insufficient or cause high overhead. In previous work, we presented a new WFP defense for Tor that incorporates multipath transmissions to repel malicious Tor nodes from conducting WFP attacks. In this demo, we showcase the operation of our traffic splitting defense by visually illustrating the underlying Tor multipath transmission using LED-equipped Raspberry Pis. Electronic Communications of the EASST, Volume 080 Onion Routing; Website Fingerprinting; Multipath Traffic; Privacy https://www.comsys.rwth-aachen.de/fileadmin/papers/2021/2021-reuter-splitting-demo.pdf TU Berlin Proceedings of the 2021 International Conference on Networked Systems (NetSys '21), September 13-16, 2021, Lübeck, Germany Lübeck, Germany September 13-16, 2021 1863-2122 10.14279/tuj.eceasst.80.1151 1 SebastianReuter JensHiller JanPennekamp AndriyPanchenko KlausWehrle article 2021_pennekamp_accountable_manufacturing The Road to Accountable and Dependable Manufacturing Automation 2021 9 13 2 3 202-219 The Internet of Things provides manufacturing with rich data for increased automation. Beyond company-internal data exploitation, the sharing of product and manufacturing process data along and across supply chains enables more efficient production flows and product lifecycle management. Even more, data-based automation facilitates short-lived ad hoc collaborations, realizing highly dynamic business relationships for sustainable exploitation of production resources and capacities. However, the sharing and use of business data across manufacturers and with end customers add requirements on data accountability, verifiability, and reliability and needs to consider security and privacy demands. While research has already identified blockchain technology as a key technology to address these challenges, current solutions mainly evolve around logistics or focus on established business relationships instead of automated but highly dynamic collaborations that cannot draw upon long-term trust relationships. We identify three open research areas on the road to such a truly accountable and dependable manufacturing enabled by blockchain technology: blockchain-inherent challenges, scenario-driven challenges, and socio-economic challenges. Especially tackling the scenario-driven challenges, we discuss requirements and options for realizing a blockchain-based trustworthy information store and outline its use for automation to achieve a reliable sharing of product information, efficient and dependable collaboration, and dynamic distributed markets without requiring established long-term trust. blockchain; supply chain management; Industry 4.0; manufacturing; secure industrial collaboration; scalability; Industrial Internet of Things; Internet of Production internet-of-production https://www.comsys.rwth-aachen.de/fileadmin/papers/2021/2021-pennekamp-manufacturing.pdf MDPI 2673-4052 10.3390/automation2030013 1 JanPennekamp RomanMatzutt Salil S.Kanhere JensHiller KlausWehrle article 2021-wehrle-energy A Novel Receiver Design for Energy Packet‐Based Dispatching Energy Technology 2021 9 2 10.1002/ente.202000937 1 FriedirchWiegel EdoardoDe Din AntonelloMonti KlausWehrle MarcHiller MartinaZitterbart VeitHagenmeyer