This file was created by the TYPO3 extension bib --- Timezone: CEST Creation date: 2024-07-03 Creation time: 13-30-01 --- Number of references 4 inproceedings 2019_delacadena_countermeasure POSTER: Traffic Splitting to Counter Website Fingerprinting 2019 11 12 2533-2535 Website fingerprinting (WFP) is a special type of traffic analysis, which aims to infer the websites visited by a user. Recent studies have shown that WFP targeting Tor users is notably more effective than previously expected. Concurrently, state-of-the-art defenses have been proven to be less effective. In response, we present a novel WFP defense that splits traffic over multiple entry nodes to limit the data a single malicious entry can use. Here, we explore several traffic-splitting strategies to distribute user traffic. We establish that our weighted random strategy dramatically reduces the accuracy from nearly 95% to less than 35% for four state-of-the-art WFP attacks without adding any artificial delays or dummy traffic. https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-delacadena-splitting-defense.pdf ACM Proceedings of the 26th ACM SIGSAC Conference on Computer and Communications Security (CCS '19), November 11-15, 2019, London, United Kingdom London, United Kingdom November 11-15, 2019 978-1-4503-6747-9/19/11 10.1145/3319535.3363249 1 WladimirDe la Cadena AsyaMitseva JanPennekamp JensHiller FabianLanze ThomasEngel KlausWehrle AndriyPanchenko inproceedings 2019-hiller-icnp-tailoringOR Tailoring Onion Routing to the Internet of Things: Security and Privacy in Untrusted Environments 2019 10 10 An increasing number of IoT scenarios involve mobile, resource-constrained IoT devices that rely on untrusted networks for Internet connectivity. In such environments, attackers can derive sensitive private information of IoT device owners, e.g., daily routines or secret supply chain procedures, when sniffing on IoT communication and linking IoT devices and owner. Furthermore, untrusted networks do not provide IoT devices with any protection against attacks from the Internet. Anonymous communication using onion routing provides a well-proven mechanism to keep the relationship between communication partners secret and (optionally) protect against network attacks. However, the application of onion routing is challenged by protocol incompatibilities and demanding cryptographic processing on constrained IoT devices, rendering its use infeasible. To close this gap, we tailor onion routing to the IoT by bridging protocol incompatibilities and offloading expensive cryptographic processing to a router or web server of the IoT device owner. Thus, we realize resource-conserving access control and end-to-end security for IoT devices. To prove applicability, we deploy onion routing for the IoT within the well-established Tor network enabling IoT devices to leverage its resources to achieve the same grade of anonymity as readily available to traditional devices. internet-of-production https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-hiller-tailoring.pdf IEEE Proceedings of the 27th IEEE International Conference on Network Protocols (ICNP '19), October 7-10, 2019, Chicago, IL, USA Chicago, IL, USA 27th IEEE International Conference on Network Protocols (ICNP 2019) 7-10. Oct. 2019 978-1-7281-2700-2 2643-3303 10.1109/ICNP.2019.8888033 1 JensHiller JanPennekamp MarkusDahlmanns MartinHenze AndriyPanchenko KlausWehrle inproceedings 2019_pennekamp_multipath Multipathing Traffic to Reduce Entry Node Exposure in Onion Routing 2019 10 7 Users of an onion routing network, such as Tor, depend on its anonymity properties. However, especially malicious entry nodes, which know the client’s identity, can also observe the whole communication on their link to the client and, thus, conduct several de-anonymization attacks. To limit this exposure and to impede corresponding attacks, we propose to multipath traffic between the client and the middle node to reduce the information an attacker can obtain at a single vantage point. To facilitate the deployment, only clients and selected middle nodes need to implement our approach, which works transparently for the remaining legacy nodes. Furthermore, we let clients control the splitting strategy to prevent any external manipulation. Poster Session https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-pennekamp-multipathing.pdf IEEE Proceedings of the 27th IEEE International Conference on Network Protocols (ICNP '19), October 7-10, 2019, Chicago, IL, USA Chicago, IL, USA 27th IEEE International Conference on Network Protocols (ICNP 2019) 7-10. Oct. 2019 978-1-7281-2700-2 2643-3303 10.1109/ICNP.2019.8888029 1 JanPennekamp JensHiller SebastianReuter WladimirDe la Cadena AsyaMitseva MartinHenze ThomasEngel KlausWehrle AndriyPanchenko inproceedings 2019_pennekamp_doppelganger Hi Doppelgänger: Towards Detecting Manipulation in News Comments 2019 5 13 197-205 Public opinion manipulation is a serious threat to society, potentially influencing elections and the political situation even in established democracies. The prevalence of online media and the opportunity for users to express opinions in comments magnifies the problem. Governments, organizations, and companies can exploit this situation for biasing opinions. Typically, they deploy a large number of pseudonyms to create an impression of a crowd that supports specific opinions. Side channel information (such as IP addresses or identities of browsers) often allows a reliable detection of pseudonyms managed by a single person. However, while spoofing and anonymizing data that links these accounts is simple, a linking without is very challenging. In this paper, we evaluate whether stylometric features allow a detection of such doppelgängers within comment sections on news articles. To this end, we adapt a state-of-the-art doppelgängers detector to work on small texts (such as comments) and apply it on three popular news sites in two languages. Our results reveal that detecting potential doppelgängers based on linguistics is a promising approach even when no reliable side channel information is available. Preliminary results following an application in the wild shows indications for doppelgängers in real world data sets. online manipulation; doppelgänger detection; stylometry comtex https://www.comsys.rwth-aachen.de/fileadmin/papers/2019/2019-pennekamp-doppelganger.pdf ACM Companion Proceedings of the 2019 World Wide Web Conference (WWW '19 Companion), 4th Workshop on Computational Methods in Online Misbehavior (CyberSafety '19), May 13–17, 2019, San Francisco, CA, USA San Francisco, California, USA May 13-17, 2019 978-1-4503-6675-5/19/05 10.1145/3308560.3316496 1 JanPennekamp MartinHenze OliverHohlfeld AndriyPanchenko