This file was created by the TYPO3 extension bib --- Timezone: CEST Creation date: 2024-07-03 Creation time: 07-39-07 --- Number of references 4 inproceedings 2022_pennekamp_cumul CUMUL & Co: High-Impact Artifacts for Website Fingerprinting Research 2022 12 8 RWTH-2022-10811 Anonymous communication on the Internet is about hiding the relationship between communicating parties. At NDSS '16, we presented a new website fingerprinting approach, CUMUL, that utilizes novel features and a simple yet powerful algorithm to attack anonymization networks such as Tor. Based on pattern observation of data flows, this attack aims at identifying the content of encrypted and anonymized connections. Apart from the feature generation and the used classifier, we also provided a large dataset to the research community to study the attack at Internet scale. In this paper, we emphasize the impact of our artifacts by analyzing publications referring to our work with respect to the dataset, feature extraction method, and source code of the implementation. Based on this data, we draw conclusions about the impact of our artifacts on the research field and discuss their influence on related cybersecurity topics. Overall, from 393 unique citations, we discover more than 130 academic references that utilize our artifacts, 61 among them are highly influential (according to SemanticScholar), and at least 35 are from top-ranked security venues. This data underlines the significant relevance and impact of our work as well as of our artifacts in the community and beyond. https://www.comsys.rwth-aachen.de/fileadmin/papers/2022/2022-pennekamp-cumul-artifacts.pdf https://www.acsac.org/2022/program/artifacts_competition/ ACSA Cybersecurity Artifacts Competition and Impact Award at 38th Annual Computer Security Applications Conference (ACSAC '22), December 5-9, 2022, Austin, TX, USA Austin, TX, USA 38th Annual Computer Security Applications Conference (ACSAC '22) December 5-9, 2022 10.18154/RWTH-2022-10811 1 JanPennekamp MartinHenze AndreasZinnen FabianLanze KlausWehrle AndriyPanchenko article 2022-henze-tii-prada Complying with Data Handling Requirements in Cloud Storage Systems IEEE Transactions on Cloud Computing 2022 9 10 3 1661-1674 In past years, cloud storage systems saw an enormous rise in usage. However, despite their popularity and importance as underlying infrastructure for more complex cloud services, today’s cloud storage systems do not account for compliance with regulatory, organizational, or contractual data handling requirements by design. Since legislation increasingly responds to rising data protection and privacy concerns, complying with data handling requirements becomes a crucial property for cloud storage systems. We present Prada , a practical approach to account for compliance with data handling requirements in key-value based cloud storage systems. To achieve this goal, Prada introduces a transparent data handling layer, which empowers clients to request specific data handling requirements and enables operators of cloud storage systems to comply with them. We implement Prada on top of the distributed database Cassandra and show in our evaluation that complying with data handling requirements in cloud storage systems is practical in real-world cloud deployments as used for microblogging, data sharing in the Internet of Things, and distributed email storage. https://www.comsys.rwth-aachen.de/fileadmin/papers/2022/2022-henze-tii-prada.pdf Online en 2168-7161 10.1109/TCC.2020.3000336 1 MartinHenze RomanMatzutt JensHiller ErikMühmer Jan HenrikZiegeldorf Johannesvan der Giet KlausWehrle proceedings 2022-serror-cset PowerDuck: A GOOSE Data Set of Cyberattacks in Substations 2022 8 8 5 data sets, network traffic, smart grid security, IDS https://www.comsys.rwth-aachen.de/fileadmin/papers/2022/2022-serror-cset-powerduck.pdf ACM
New York, NY, USA
online Virtual Cyber Security Experimentation and Test Workshop (CSET 2022) August 8, 2022 978-1-4503-9684-4/22/08 10.1145/3546096.3546102 1 SvenZemanek ImmanuelHacker KonradWolsing EricWagner MartinHenze MartinSerror
article 2022_brauner_iop A Computer Science Perspective on Digital Transformation in Production ACM Transactions on Internet of Things 2022 5 1 3 2 The Industrial Internet-of-Things (IIoT) promises significant improvements for the manufacturing industry by facilitating the integration of manufacturing systems by Digital Twins. However, ecological and economic demands also require a cross-domain linkage of multiple scientific perspectives from material sciences, engineering, operations, business, and ergonomics, as optimization opportunities can be derived from any of these perspectives. To extend the IIoT to a true Internet of Production, two concepts are required: first, a complex, interrelated network of Digital Shadows which combine domain-specific models with data-driven AI methods; and second, the integration of a large number of research labs, engineering, and production sites as a World Wide Lab which offers controlled exchange of selected, innovation-relevant data even across company boundaries. In this article, we define the underlying Computer Science challenges implied by these novel concepts in four layers: Smart human interfaces provide access to information that has been generated by model-integrated AI. Given the large variety of manufacturing data, new data modeling techniques should enable efficient management of Digital Shadows, which is supported by an interconnected infrastructure. Based on a detailed analysis of these challenges, we derive a systematized research roadmap to make the vision of the Internet of Production a reality. Internet of Production; World Wide Lab; Digital Shadows; Industrial Internet of Things internet-of-production https://www.comsys.rwth-aachen.de/fileadmin/papers/2022/2022-brauner-digital-transformation.pdf ACM 2691-1914 10.1145/3502265 1 PhilippBrauner ManuelaDalibor MatthiasJarke IkeKunze IstvánKoren GerhardLakemeyer MartinLiebenberg JudithMichael JanPennekamp ChristophQuix BernhardRumpe Wilvan der Aalst KlausWehrle AndreasWortmann MartinaZiefle