This file was created by the TYPO3 extension bib --- Timezone: CEST Creation date: 2024-07-03 Creation time: 11-41-12 --- Number of references 17 inproceedings 2021_pennekamp_laser Collaboration is not Evil: A Systematic Look at Security Research for Industrial Use 2021 12 21 Following the recent Internet of Things-induced trends on digitization in general, industrial applications will further evolve as well. With a focus on the domains of manufacturing and production, the Internet of Production pursues the vision of a digitized, globally interconnected, yet secure environment by establishing a distributed knowledge base. Background. As part of our collaborative research of advancing the scope of industrial applications through cybersecurity and privacy, we identified a set of common challenges and pitfalls that surface in such applied interdisciplinary collaborations. Aim. Our goal with this paper is to support researchers in the emerging field of cybersecurity in industrial settings by formalizing our experiences as reference for other research efforts, in industry and academia alike. Method. Based on our experience, we derived a process cycle of performing such interdisciplinary research, from the initial idea to the eventual dissemination and paper writing. This presented methodology strives to successfully bootstrap further research and to encourage further work in this emerging area. Results. Apart from our newly proposed process cycle, we report on our experiences and conduct a case study applying this methodology, raising awareness for challenges in cybersecurity research for industrial applications. We further detail the interplay between our process cycle and the data lifecycle in applied research data management. Finally, we augment our discussion with an industrial as well as an academic view on this research area and highlight that both areas still have to overcome significant challenges to sustainably and securely advance industrial applications. Conclusions. With our proposed process cycle for interdisciplinary research in the intersection of cybersecurity and industrial application, we provide a foundation for further research. We look forward to promising research initiatives, projects, and directions that emerge based on our methodological work. internet-of-production https://www.comsys.rwth-aachen.de/fileadmin/papers/2021/2021-pennekamp-laser-collaboration.pdf ACSA Proceedings of the Workshop on Learning from Authoritative Security Experiment Results (LASER '20), co-located with the 36th Annual Computer Security Applications Conference (ACSAC '20), December 7-11, 2020, Austin, TX, USA Austin, TX, USA Learning from Authoritative Security Experiment Results (LASER '20) December 8, 2020 978-1-891562-81-5 10.14722/laser-acsac.2020.23088 1 JanPennekamp ErikBuchholz MarkusDahlmanns IkeKunze StefanBraun EricWagner MatthiasBrockmann KlausWehrle MartinHenze inproceedings 2021_kiesel_5g Development of a Model to Evaluate the Potential of 5G Technology for Latency-Critical Applications in Production 2021 12 15 739-744 Latency-critical applications in production promise to be essential enablers for performance improvement in production. However, they require the right and often wireless communication system. 5G technology appears to be an effective way to achieve communication system for these applications. Its estimated economic benefit on production gross domestic product is immense ($740 billion Euro until 2030). However, 55% of production companies state that 5G technology deployment is currently not a subject matter for them and mainly state the lack of knowledge on benefits as a reason. Currently, it is missing an approach or model for a use case specific, data-based evaluation of 5G technology influence on the performance of production applications. Therefore, this paper presents a model to evaluate the potential of 5G technology for latency-critical applications in production. First, we derive requirements for the model to fulfill the decision-makers' needs. Second, we analyze existing evaluation approaches regarding their fulfillment of the derived requirements. Third, based on outlined research gaps, we develop a model fulfilling the requirements. Fourth, we give an outlook for further research needs. 5G technology; latency-critical applications; production; evaluation model https://www.comsys.rwth-aachen.de/fileadmin/papers/2021/2021-kiesel-5g-model.pdf IEEE Proceedings of the 28th IEEE International Conference on Industrial Engineering and Engineering Management (IEEM '21), December 13-16, 2021, Singapore, Singapore Singapore, Singapore December 13-16, 2021 978-1-6654-3771-4 10.1109/IEEM50564.2021.9673074 1 RaphaelKiesel FalkBoehm JanPennekamp Robert H.Schmitt inproceedings 2021-krude-nfp-pred Determination of Throughput Guarantees for Processor-based SmartNICs 2021 12 7 maki https://www.comsys.rwth-aachen.de/fileadmin/papers/2021/2021-krude-nfp-pred.pdf ACM The 17th International Conference on emerging Networking EXperiments and Technologies (CoNEXT '21) 978-1-4503-9098-9/21/12 10.1145/3485983.3494842 1 JohannesKrude JanRüth DanielSchemmel FelixRath Iohannes-HeorhFolbort KlausWehrle inproceedings 2021-kunze-spin-tracker Tracking the QUIC Spin Bit on Tofino 2021 12 7 15–21 https://www.comsys.rwth-aachen.de/fileadmin/papers/2021/2021-kunze-spin-tracker.pdf ACM Proceedings of the 2021 Workshop on Evolution, Performance and Interoperability of QUIC (EPIQ '21) 9781450391351 10.1145/3488660.3493804 1 IkeKunze ConstantinSander KlausWehrle JanRüth inproceedings 2021_pennekamp_bootstrapping Confidential Computing-Induced Privacy Benefits for the Bootstrapping of New Business Relationships 2021 11 15 RWTH-2021-09499 In addition to quality improvements and cost reductions, dynamic and flexible business relationships are expected to become more important in the future to account for specific customer change requests or small-batch production. Today, despite reservation, sensitive information must be shared upfront between buyers and sellers. However, without a trust relation, this situation is precarious for the involved companies as they fear for their competitiveness following information leaks or breaches of their privacy. To address this issue, the concepts of confidential computing and cloud computing come to mind as they promise to offer scalable approaches that preserve the privacy of participating companies. In particular, designs building on confidential computing can help to technically enforce privacy. Moreover, cloud computing constitutes an elegant design choice to scale these novel protocols to industry needs while limiting the setup and management overhead for practitioners. Thus, novel approaches in this area can advance the status quo of bootstrapping new relationships as they provide privacy-preserving alternatives that are suitable for immediate deployment. bootstrapping procurement; business relationships; secure industrial collaboration; privacy; Internet of Production internet-of-production https://www.comsys.rwth-aachen.de/fileadmin/papers/2021/2021-pennekamp-bootstrapping.pdf RWTH Aachen University Blitz Talk at the 2021 Cloud Computing Security Workshop (CCSW '21), co-located with the 28th ACM SIGSAC Conference on Computer and Communications Security (CCS '21), November 15-19, 2021, Seoul, Korea RWTH Aachen University Seoul, Korea November 14, 2021 10.18154/RWTH-2021-09499 JanPennekamp FrederikFuhrmann MarkusDahlmanns TimoHeutmann AlexanderKreppein DennisGrunert ChristophLange Robert H.Schmitt KlausWehrle article 2021_kretschmer_cookies Cookie Banners and Privacy Policies: Measuring the Impact of the GDPR on the Web ACM Transactions on the Web 2021 11 1 15 4 The General Data Protection Regulation (GDPR) is in effect since May of 2018. As one of the most comprehensive pieces of legislation concerning privacy, it sparked a lot of discussion on the effect it would have on users and providers of online services in particular, due to the large amount of personal data processed in this context. Almost three years later, we are interested in revisiting this question to summarize the impact this new regulation has had on actors in the World Wide Web. Using Scopus, we obtain a vast corpus of academic work to survey studies related to changes on websites since and around the time, the GDPR went into force. Our findings show that the emphasis on privacy increased w.r.t. online services, but plenty potential for improvements remains. Although online services are on average more transparent regarding data processing practices in their public data policies, a majority of these policies still either lack information required by the GDPR (e.g., contact information for users to file privacy inquiries), or do not provide this information in a user-friendly form. Additionally, we summarize that online services more often provide means for their users to opt out of data processing, but regularly obstruct convenient access to such means through unnecessarily complex and sometimes illegitimate interface design. Our survey further details that this situation contradicts the preferences expressed by users both verbally and through their actions, and researchers have proposed multiple approaches to facilitate GDPR-conform data processing without negatively impacting the user experience. Thus, we compiled reoccurring points of criticism by privacy researchers and data protection authorities into a list of four guidelines for service providers to consider. Cookies; Privacy; GDPR; Web; Privacy Legislation; Fingerprinting https://www.comsys.rwth-aachen.de/fileadmin/papers/2021/2021-kretschmer-tweb-cookies.pdf ACM 1559-1131 10.1145/3466722 1 MichaelKretschmer JanPennekamp KlausWehrle techreport draft-kunze-coinrg-transport-issues-05 Transport Protocol Issues of In-Network Computing Systems 2021 10 draft-kunze-coinrg-transport-issues-05 Expires: 28 April 2022 (work in progress) https://www.comsys.rwth-aachen.de/fileadmin/papers/2022/draft-kunze-coinrg-transport-issues-05.pdf https://datatracker.ietf.org/doc/draft-kunze-coinrg-transport-issues/ IETF Trust Internet Drafts Internet Engineering Task Force Internet Engineering Task Force IkeKunze KlausWehrle DirkTrossen article 2021_pennekamp_accountable_manufacturing The Road to Accountable and Dependable Manufacturing Automation 2021 9 13 2 3 202-219 The Internet of Things provides manufacturing with rich data for increased automation. Beyond company-internal data exploitation, the sharing of product and manufacturing process data along and across supply chains enables more efficient production flows and product lifecycle management. Even more, data-based automation facilitates short-lived ad hoc collaborations, realizing highly dynamic business relationships for sustainable exploitation of production resources and capacities. However, the sharing and use of business data across manufacturers and with end customers add requirements on data accountability, verifiability, and reliability and needs to consider security and privacy demands. While research has already identified blockchain technology as a key technology to address these challenges, current solutions mainly evolve around logistics or focus on established business relationships instead of automated but highly dynamic collaborations that cannot draw upon long-term trust relationships. We identify three open research areas on the road to such a truly accountable and dependable manufacturing enabled by blockchain technology: blockchain-inherent challenges, scenario-driven challenges, and socio-economic challenges. Especially tackling the scenario-driven challenges, we discuss requirements and options for realizing a blockchain-based trustworthy information store and outline its use for automation to achieve a reliable sharing of product information, efficient and dependable collaboration, and dynamic distributed markets without requiring established long-term trust. blockchain; supply chain management; Industry 4.0; manufacturing; secure industrial collaboration; scalability; Industrial Internet of Things; Internet of Production internet-of-production https://www.comsys.rwth-aachen.de/fileadmin/papers/2021/2021-pennekamp-manufacturing.pdf MDPI 2673-4052 10.3390/automation2030013 1 JanPennekamp RomanMatzutt Salil S.Kanhere JensHiller KlausWehrle article 2021_matzutt_coinprune_v2 CoinPrune: Shrinking Bitcoin's Blockchain Retrospectively IEEE Transactions on Network and Service Management 2021 9 10 18 3 3064-3078 Popular cryptocurrencies continue to face serious scalability issues due to their ever-growing blockchains. Thus, modern blockchain designs began to prune old blocks and rely on recent snapshots for their bootstrapping processes instead. Unfortunately, established systems are often considered incapable of adopting these improvements. In this work, we present CoinPrune, our block-pruning scheme with full Bitcoin compatibility, to revise this popular belief. CoinPrune bootstraps joining nodes via snapshots that are periodically created from Bitcoin's set of unspent transaction outputs (UTXO set). Our scheme establishes trust in these snapshots by relying on CoinPrune-supporting miners to mutually reaffirm a snapshot's correctness on the blockchain. This way, snapshots remain trustworthy even if adversaries attempt to tamper with them. Our scheme maintains its retrospective deployability by relying on positive feedback only, i.e., blocks containing invalid reaffirmations are not rejected, but invalid reaffirmations are outpaced by the benign ones created by an honest majority among CoinPrune-supporting miners. Already today, CoinPrune reduces the storage requirements for Bitcoin nodes by two orders of magnitude, as joining nodes need to fetch and process only 6 GiB instead of 271 GiB of data in our evaluation, reducing the synchronization time of powerful devices from currently 7 h to 51 min, with even larger potential drops for less powerful devices. CoinPrune is further aware of higher-level application data, i.e., it conserves otherwise pruned application data and allows nodes to obfuscate objectionable and potentially illegal blockchain content from their UTXO set and the snapshots they distribute. blockchain; block pruning; synchronization; bootstrapping; scalability; velvet fork; Bitcoin mynedata; impact_digital; digital_campus https://www.comsys.rwth-aachen.de/fileadmin/papers/2021/2021-matzutt-coinprune-v2.pdf English 1932-4537 10.1109/TNSM.2021.3073270 1 RomanMatzutt BenediktKalde JanPennekamp ArthurDrichel MartinHenze KlausWehrle inproceedings 2021-kunze-efm-evaluation L, Q, R, and T - Which Spin Bit Cousin Is Here to Stay? 2021 7 22 - 28 /fileadmin/papers/2021/2021-kunze-efm-evaluation.pdf ACM ANRW '21: Proceedings of the Applied Networking Research Workshop Virtual Event Applied Networking Research Workshop (ANRW '21) July 2021 10.1145/3472305.3472319 1 IkeKunze KlausWehrle JanRüth inproceedings 2021-kunze-signal-detection Detecting Out-Of-Control Sensor Signals in Sheet Metal Forming using In-Network Computing 2021 6 10 internet-of-production https://www.comsys.rwth-aachen.de/fileadmin/papers/2021/2021-kunze-signal-detection.pdf IEEE Proceedings of the 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE) 978-1-7281-9023-5 2163-5145 10.1109/ISIE45552.2021.9576221 1 IkeKunze PhilippNiemietz LiamTirpitz RenéGlebke DanielTrauth ThomasBergs KlausWehrle inproceedings 2021-glebke-service-based-forwarding Service-based Forwarding via Programmable Dataplanes 2021 6 10 reflexes /fileadmin/papers/2021/2021-glebke-service-based-forwarding.pdf IEEE Proceedings of the 2021 IEEE International Conference on High Performance Switching and Routing: Workshop on Semantic Addressing and Routing for Future Networks (SARNET-21) 978-1-6654-4005-9 2325-5609 10.1109/HPSR52026.2021.9481814 1 RenéGlebke DirkTrossen IkeKunze DavidLou JanRüth MirkoStoffers KlausWehrle inproceedings 2021-kunze-coordinate-transformation Investigating the Applicability of In-Network Computing to Industrial Scenarios 2021 5 11 334-340 in-network computing; latency; approximation internet-of-production,reflexes https://www.comsys.rwth-aachen.de/fileadmin/papers/2021/2021-kunze-coordinate-transformation.pdf IEEE Proceedings of the 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS '21) 978-1-7281-6207-2 10.1109/ICPS49255.2021.9468247 1 IkeKunze RenéGlebke JanScheiper MatthiasBodenbenner Robert H.Schmitt KlausWehrle article 2021_buckhorst_lmas Holarchy for Line-less Mobile Assembly Systems Operation in the Context of the Internet of Production Procedia CIRP 2021 5 3 99 448-453 Assembly systems must provide maximum flexibility qualified by organization and technology to offer cost-compliant performance features to differentiate themselves from competitors in buyers' markets. By mobilization of multipurpose resources and dynamic planning, Line-less Mobile Assembly Systems (LMASs) offer organizational reconfigurability. By proposing a holarchy to combine LMASs with the concept of an Internet of Production (IoP), we enable LMASs to source valuable information from cross-level production networks, physical resources, software nodes, and data stores that are interconnected in an IoP. The presented holarchy provides a concept of how to address future challenges, meet the requirements of shorter lead times, and unique lifecycle support. The paper suggests an application of decision making, distributed sensor services, recommender-based data reduction, and in-network computing while considering safety and human usability alike. Proceedings of the 14th CIRP Conference on Intelligent Computation in Manufacturing Engineering (ICME '20), July 14-17, 2020, Gulf of Naples, Italy Internet of Production; Line-less Mobile Assembly System; Industrial Assembly; Smart Factory internet-of-production https://www.comsys.rwth-aachen.de/fileadmin/papers/2021/2021-buckhorst-holarchy.pdf Elsevier Gulf of Naples, Italy July 14-17, 2020 2212-8271 10.1016/j.procir.2021.03.064 1 Armin F.Buckhorst BenjaminMontavon DominikWolfschläger MelanieBuchsbaum AmirShahidi HenningPetruck IkeKunze JanPennekamp ChristianBrecher MathiasHüsing BurkhardCorves VerenaNitsch KlausWehrle Robert H.Schmitt article 2021_bader_privaccichain Blockchain-Based Privacy Preservation for Supply Chains Supporting Lightweight Multi-Hop Information Accountability Information Processing & Management 2021 5 1 58 3 The benefits of information sharing along supply chains are well known for improving productivity and reducing costs. However, with the shift towards more dynamic and flexible supply chains, privacy concerns severely challenge the required information retrieval. A lack of trust between the different involved stakeholders inhibits advanced, multi-hop information flows, as valuable information for tracking and tracing products and parts is either unavailable or only retained locally. Our extensive literature review of previous approaches shows that these needs for cross-company information retrieval are widely acknowledged, but related work currently only addresses them insufficiently. To overcome these concerns, we present PrivAccIChain, a secure, privacy-preserving architecture for improving the multi-hop information retrieval with stakeholder accountability along supply chains. To address use case-specific needs, we particularly introduce an adaptable configuration of transparency and data privacy within our design. Hence, we enable the benefits of information sharing as well as multi-hop tracking and tracing even in supply chains that include mutually distrusting stakeholders. We evaluate the performance of PrivAccIChain and demonstrate its real-world feasibility based on the information of a purchasable automobile, the e.GO Life. We further conduct an in-depth security analysis and propose tunable mitigations against common attacks. As such, we attest PrivAccIChain's practicability for information management even in complex supply chains with flexible and dynamic business relationships. multi-hop collaboration; tracking and tracing; Internet of Production; e.GO; attribute-based encryption internet-of-production https://www.comsys.rwth-aachen.de/fileadmin/papers/2021/2021-bader-ipm-privaccichain.pdf Elsevier 0306-4573 10.1016/j.ipm.2021.102529 1 LennartBader JanPennekamp RomanMatzutt DavidHedderich MarkusKowalski VolkerLücken KlausWehrle inproceedings 2021-kunze-aqm-tofino-p4 Tofino + P4: A Strong Compound for AQM on High-Speed Networks? 2021 5 72-80 internet-of-production https://www.comsys.rwth-aachen.de/fileadmin/papers/2021/2021-kunze-aqm-tofino-p4.pdf IFIP/IEEE Proceedings of the International Symposium on Integrated Network Management (IM '21) Virtual Event International Symposium on Integrated Network Management (IM '21) May 2021 978-1-7281-9041-9 1 IkeKunze MoritzGunz DavidSaam KlausWehrle JanRüth inproceedings 2021-sander-zoom-cc Video Conferencing and Flow-Rate Fairness: A First Look at Zoom and the Impact of Flow-Queuing AQM 2021 3 internet-of-production /fileadmin/papers/2021/2021-sander-zoom-fairness-aqm.pdf https://arxiv.org/abs/2107.00904 Springer Proceedings of the Passive and Active Measurement Conference (PAM '21) Passive and Active Measurement Conference (PAM 2021) 10.1007/978-3-030-72582-2_1 1 ConstantinSander IkeKunze KlausWehrle JanRüth