% % This file was created by the TYPO3 extension % bib % --- Timezone: CEST % Creation date: 2024-07-03 % Creation time: 19-23-31 % --- Number of references % 2 % @Inproceedings { 2011-icdcs-sasnauskas-sde, title = {Scalable Symbolic Execution of Distributed Systems}, year = {2011}, month = {6}, pages = {333-342}, abstract = {Recent advances in symbolic execution have proposed a number of promising solutions to automatically achieve high-coverage and explore non-determinism during testing. This attractive testing technique of unmodified software assists developers with concrete inputs and deterministic schedules to analyze erroneous program paths. Being able to handle complex systems' software, these tools only consider single software instances and not their distributed execution which forms the core of distributed systems. The step to symbolic distributed execution is however steep, posing two core challenges: (1) additional state growth and (2) the state intra-dependencies resulting from communication. In this paper, we present SDE—a novel approach enabling scalable symbolic execution of distributed systems. The key contribution of our work is two-fold. First, we generalize the problem space of SDE and develop an algorithm significantly eliminating redundant states during testing. The key idea is to benefit from the nodes' local communication minimizing the number of states representing the distributed execution. Second, we demonstrate the practical applicability of SDE in testing with three sensornet scenarios running Contiki OS.}, tags = {kleenet}, url = {fileadmin/papers/2011/2011-06-icdcs-sasnauskas-sde.pdf}, misc2 = {Druck}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, booktitle = {Proceedings of the 31st IEEE International Conference on Distributed Computing Systems (ICDCS 2011), June 2011, Minneapolis, MN, USA}, language = {en}, ISBN = {978-0-7695-4364-2}, ISSN = {1063-6927}, DOI = {10.1109/ICDCS.2011.28}, reviewed = {1}, author = {Sasnauskas, Raimondas and Soria Dustmann, Oscar and Kaminski, Benjamin Lucien and Weise, Carsten and Kowalewski, Stefan and Wehrle, Klaus} } @Inproceedings { 2010-ipsn-sasnauskas-kleenet, title = {KleeNet: Discovering Insidious Interaction Bugs in Wireless Sensor Networks Before Deployment}, year = {2010}, month = {4}, day = {12}, pages = {186--196}, abstract = {Complex interactions and the distributed nature of wireless sensor networks make automated testing and debugging before deployment a necessity. A main challenge is to detect bugs that occur due to non-deterministic events, such as node reboots or packet duplicates. Often, these events have the potential to drive a sensor network and its applications into corner-case situations, exhibiting bugs that are hard to detect using existing testing and debugging techniques. In this paper, we present KleeNet, a debugging environment that effectively discovers such bugs before deployment. KleeNet executes unmodified sensor network applications on symbolic input and automatically injects non-deterministic failures. As a result, KleeNet generates distributed execution paths at high-coverage, including low-probability corner-case situations. As a case study, we integrated KleeNet into the Contiki OS and show its effectiveness by detecting four insidious bugs in the uIP TCP/IP protocol stack. One of these bugs is critical and lead to refusal of further connections.}, keywords = {automated protocol testing, experimentation, failure detection, wireless sensor networks}, tags = {kleenet}, url = {fileadmin/papers/2010/2010-04-ipsn-sasnauskas-KleeNet.pdf}, misc2 = {Print}, publisher = {ACM}, address = {New York, NY, USA}, booktitle = {Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN 2010), Stockholm, Sweden}, language = {en}, ISBN = {978-1-60558-988-6}, DOI = {http://doi.acm.org/10.1145/1791212.1791235}, reviewed = {1}, author = {Sasnauskas, Raimondas and Landsiedel, Olaf and Alizai, Muhammad Hamad and Weise, Carsten and Kowalewski, Stefan and Wehrle, Klaus} }