
Chair of
Communication and Distributed Systems

R
ep

o
rt

s
o

n
 C

o
m

m
u

n
ic

at
io

n
s

an
d

 D
is

tr
ib

u
te

d
 S

ys
te

m
s

E
d

it
o

r:
 P

ro
f.

D
r.

-I
n

g
. K

la
u

s
W

eh
rl

e

VOL 17

Accounting for Privacy in
the Cloud Computing Landscape

M
ar

tin
 H

en
ze

While offering many benefits, cloud computing also introduces serious privacy
challenges as evidenced by recent security breaches and privacy incidents. In
this dissertation, we argue that overcoming these privacy challenges requires
cooperation between the various actors in the cloud computing landscape, i.e.,
users, service providers, and infrastructure providers. All these different actors
have clear incentives to care for privacy and, with the contributions presented in
this dissertation, we provide technical approaches that enable each of them to
account for privacy.

As our first contribution to support users in exercising their privacy, we raise awa-
reness for their exposure to cloud services in the context of email services as
well as smartphone apps and enable them to anonymously compare their cloud
usage to their peers. With privacy requirements-aware cloud infrastructure as our
second contribution, we realize user-specified per-data item privacy policies and
enable infrastructure providers to adhere to them. We furthermore support service
providers in building privacy-preserving cloud services for the Internet of Things
in the context of our third contribution by enabling the transparent processing of
protected data and by introducing a distributed architecture to secure the control
over devices and networks. Finally, with our fourth contribution, we propose a
decentralized cloud infrastructure that enables users who strongly distrust cloud
providers to completely shift certain services away from the cloud by cooperating
with other users.

A
cc

o
u

n
ti

n
g

 fo
r

P
ri

va
cy

 in
 t

h
e

C
lo

u
d

 C
o

m
p

u
ti

n
g

 L
an

d
sc

ap
e

Martin Henze

Accounting for Privacy in the

Cloud Computing Landscape

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften
der RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Informatiker

Martin Henze

aus Mönchengladbach

Berichter:

Prof. Dr.-Ing. Klaus Wehrle
Prof. Dr. Thomas Engel

Tag der mündlichen Prüfung: 22. 11. 2018

Shaker Verlag
Aachen 2018

Reports on Communications and Distributed Systems

edited by
Prof. Dr.-Ing. Klaus Wehrle

Communication and Distributed Systems,
RWTH Aachen University

Volume 17

Martin Henze

Accounting for Privacy in the
Cloud Computing Landscape

WICHTIG: D 82 überprüfen !!!

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the Internet at
http://dnb.d-nb.de.

Zugl.: D 82 (Diss. RWTH Aachen University, 2018)

Copyright Shaker Verlag 2018
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
of the publishers.

Printed in Germany.

ISBN 978-3-8440-6389-9
ISSN 2191-0863

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen
Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9
Internet: www.shaker.de • e-mail: info@shaker.de

Abstract

Cloud computing enables service operators to efficiently and flexibly utilize resources
offered by third party providers instead of having to maintain their own infrastruc-
ture. As such, cloud computing offers many advantages over the traditional service
delivery model, e.g., failure safety, scalability, cost savings, and a high ease of use.
Not only service operators, but also their users benefit from these advantages. As a
result, cloud computing has revolutionized service delivery and we observe a tremen-
dous trend for moving services to the cloud. However, this trend of outsourcing
services and data to the cloud is limited by serious privacy challenges as evidenced
by recent security breaches and privacy incidents such as the global surveillance dis-
closures. These privacy challenges stem from the technical complexity and missing
transparency of cloud computing, opaque legislation with respect to the jurisdiction
that applies to users’ data, the inherent centrality of the cloud computing market,
and missing control of users over the handling of their data.
Overcoming these privacy challenges is key to enable corporate and private users
to fully embrace the advantages of cloud computing and hence secure the success
of the cloud computing paradigm. Indeed, we observe that cloud providers already
account for selected privacy requirements, e.g., by opening special data centers in
countries with strict data protection and privacy legislation. Likewise, researchers
propose technical approaches to enforce certain privacy requirements either from the
client side, e.g., using encryption, or from the service side, e.g., based on trusted
hardware. Despite these ongoing efforts, the necessary technical means to fully
account for privacy in the cloud computing landscape are still missing.
In this dissertation, we approach the pressing problem of privacy in cloud computing
from a different direction: Instead of focusing on single actors, we are convinced that
overcoming the inherent privacy challenges of cloud computing requires cooperation
between the various actors in the cloud computing landscape, i.e., users, service
providers, and infrastructure providers. All these different actors have clear incen-
tives to care for privacy and, with the contributions presented in this dissertation,
we provide technical approaches that enable each of them to account for privacy.
As our first contribution to support users in exercising their privacy, we raise aware-
ness for their exposure to cloud services in the context of email services as well as
smartphone apps and enable them to anonymously compare their cloud usage to
their peers. With privacy requirements-aware cloud infrastructure as our second
contribution, we realize user-specified per-data item privacy policies and enable in-
frastructure providers to adhere to them. We furthermore support service providers
in building privacy-preserving cloud services for the Internet of Things in the context
of our third contribution by enabling the transparent processing of protected data
and by introducing a distributed architecture to secure the control over devices and
networks. Finally, with our fourth contribution, we propose a decentralized cloud
infrastructure that enables users who strongly distrust cloud providers to completely
shift certain services away from the cloud by cooperating with other users.
The contributions of this dissertation highlight that it is both promising and feasible
to apply cooperation of different actors to strengthen users’ privacy and consequently
enable more corporate and private users to benefit from cloud computing.

Kurzfassung

Cloud Computing ermöglicht es Dienstebetreibern auf die Ressourcen von Clou-
danbietern zurück zugreifen, anstatt eine eigene Infrastruktur betreiben zu müssen.
Dabei bietet Cloud Computing viele Vorteile gegenüber dem traditionellen Betrieb
von Diensten, z. B. Ausfallsicherheit, Skalierbarkeit, Kosteneinsparungen und Be-
nutzerfreundlichkeit. Von diesen Vorteilen profitieren nicht nur die Dienstebetreiber
selbst, sondern auch deren Nutzer. Infolgedessen beobachten wir einen deutlichen
Trend zur Verlagerung von Diensten in die Cloud. Allerdings wird dieser Trend
durch gravierende Privatsphäreprobleme eingeschränkt. Dies zeigen beispielsweise
aktuelle Privatsphäreverstöße, wie die globale Überwachungsaffäre. Diese Privat-
sphäreprobleme resultieren aus der technischen Komplexität und der mangelnden
Transparenz von Cloud Computing, Unklarheiten über die für Nutzerdaten gelten-
den Rechtsvorschriften, dem zentralisierten Markt von Cloudangeboten sowie der
fehlenden Kontrolle von Nutzern über den Umgang mit ihren Daten in der Cloud.
Diese Privatsphäreprobleme zu lösen ist entscheidend, damit möglichst viele Unter-
nehmen und Privatanwender von den Vorteilen des Cloud Computings profitieren
können. In der Tat beobachten wir beispielsweise, dass Cloudanbieter bereits heute
spezielle Rechenzentren in Ländern mit strengen Datenschutzbestimmungen betrei-
ben. Aus wissenschaftlicher Sicht existieren zudem technische Ansätze zur Stärkung
der Privatsphäre, beispielsweise durch Verschlüsselung auf der Nutzerseite oder ba-
sierend auf vertrauenswürdiger Hardware auf der Diensteseite. Trotz dieser stetigen
Bemühungen fehlen nach wie vor die notwendigen technischen Mittel, um Privat-
sphäre im Cloud Computing umfassend zu adressieren.
In dieser Dissertation gehen wir die drängenden Privatsphäreprobleme des Cloud
Computings aus einer anderen Perspektive an: Anstatt uns auf einzelne Akteure zu
fokussieren, konzentrieren wir uns auf Kooperationen zwischen den verschiedenen
Akteuren, d.h. Nutzern, Dienstebetreibern und Infrastrukturanbietern, um die inhä-
renten Privatsphäreprobleme zu bewältigen. Alle diese Akteure haben klare Anreize,
sich um Privatsphärefragen zu kümmern. Im Rahmen dieser Dissertation präsentie-
ren wir technische Ansätze, die es jedem von ihnen ermöglichen, dies umzusetzen.
Als ersten Beitrag unterstützen wir Nutzer indem wir ihre Cloudnutzung im Kontext
von E-Mail-Diensten und Smartphone-Apps aufdecken und ihnen ermöglichen, ih-
re Cloudnutzung anonym miteinander zu vergleichen. Mit unserem zweiten Beitrag
realisieren wir benutzerdefinierte Privatsphäreregeln für einzelne Datenstücke und
ermöglichen Infrastrukturanbietern, diese Regeln umzusetzen. Zudem unterstützen
wir mit unserem dritten Beitrag Dienstebetreiber bei der Entwicklung von sicheren
Clouddiensten für das Internet der Dinge, indem wir die transparente Verarbei-
tung geschützter Daten ermöglichen und eine verteilte Architektur zur abgesicher-
ten Kontrolle von Geräten und Netzwerken bereitstellen. Schließlich präsentieren wir
mit unserem vierten Beitrag eine dezentrale Cloudinfrastruktur, die es Nutzern mit
starkem Misstrauen gegenüber Cloudanbietern ermöglicht, bestimmte Dienste durch
Kooperationen mit anderen Nutzern außerhalb der klassischen Cloud zu realisieren.
In dieser Dissertation zeigen wir das Potenzial sowie die Machbarkeit von Ansätzen
zur Stärkung von Privatsphäre durch die Kooperation verschiedener Akteure auf und
geben somit mehr Nutzern die Möglichkeit, von Cloud Computing zu profitieren.

To Laura

Acknowledgments

This dissertation concludes an important chapter of my life. There were many people
who accompanied me on my way and by doing so directly or indirectly influenced
me both on a personal and a professional level. All of them deserve a big and
heartfelt thank you! This dissertation would not have been possible without your
contributions, input, and support. Although I am quite confident that I will not be
able to name all of you, I want to at least thank those of you that had the most
influence on both me and my dissertation.
First of all, I want to thank Klaus for offering me the possibility to join COMSYS.
I especially appreciate the freedom he gave me in choosing and working on my
own research topic. Eventually, he entrusted me with guiding my colleagues in the
security and privacy group and I am deeply grateful for this opportunity and his
confidence in me. During my years at COMSYS, I truly learned a lot regarding
research, teaching, mentoring students, paper and proposal writing, organization,
and life in general. I also want to thank Thomas, who not only generously agreed
to act as the second opponent for my dissertation but also hosted me as a research
intern in Luxembourg before I started my endeavors at COMSYS. Furthermore, I
would like to thank Gerhard Woeginger and Thomas Noll who agreed to serve on
my dissertation committee (the latter on rather short notice, thank you!).
I owe special gratitude to a number of people for advice and guidance at different
stages of my career. Florian offered me the opportunity to work on an extremely
exciting topic for my Diploma thesis and sparked my interest in pursuing a PhD.
Andriy invited me to Luxembourg for a research internship and introduced me to a
different approach towards research. René not only put me on the right track as a
young, green colleague but also introduced me to the secret of Taiwanese dumplings.
Finally, Henrik shared most of my time at COMSYS and often acted as a much-
needed counterpart to reflect on my ideas and writing skills.
In hindsight, I could not have asked for more brilliant and motivated students. Here,
I would like to especially mention Arthur, Benedikt, David, Erik, Jens, Johannes,
Sascha, and Sebastian who pushed their individual thesis topics to the limits and thus
provided much-valued contributions to my dissertation. To all 28 thesis students,
I am grateful to your contributions and learned a lot from each of you. Further, I
had the honor to work with two research interns, Mary and Ritsuma, who provided
a different perspective on my work and brought an international flair to the group.
Finally, I would like to thank all student research assistants with whom I had the
pleasure to work. I am especially thankful for the hard work of Erik, Jan, Ina, and
Roman to push our results closer to publication.

I am particularly honored that three of my thesis students decided to join COMSYS
to pursue a PhD themselves. Jan, Jens, and Roman are excellent colleagues and were
a big help in writing the publications underlying this dissertation. Additionally, I am
proud of my other thesis students who decided to start a PhD: Andreas, Arthur, Erik
(at other groups at RWTH Aachen University), Asya (at University of Luxembourg),
and David (at University of Stuttgart). I am sure that sooner or later, I will have
the pleasure to see all of you defending brilliant dissertations yourselves.

COMSYS is a great place to be at because of the other people there. I could not
have wished for better office mates than Henrik, Jens, Mónica (with Alejandra), and
René. In your own individual ways, all of you made coming to work a pleasure every
single day. Henrik and René always had my back and offered much-valued advice.
Jens ensured that the office was pre-heated when I arrived and locked the door after
I left. Jan, Roman, and Torsten were always available for a good (and distracting)
soccer discussion. Claudia, Dirk, Janosch, Kai, Petra, Rainer, and Ulrike always
worked hard to keep any organizational and technical issues as distant as possible.
Dirk, Kai, and Rainer ensured that the group’s work-life balance always remained
in order. Besides the people at COMSYS, I am grateful to Andreas, Andriy, Asya,
Fabian, Thomas, and everyone else to welcome me to Luxembourg (and Dagstuhl)
at different occasions throughout the past years. Furthermore, I had the opportunity
to collaborate with many interesting people during the past years. I am especially
thankful for having had the opportunity to work with Daniel, Lars, and Michael.

This dissertation would not have been possible without the tremendous help of every
single of my co-authors. I learned a lot from working with each for you and cannot
thank you enough for your contributions to this dissertation. I am deeply grateful
to Benedikt, Jan, Jens, Henrik, Lina, Martin, René, Roman, and Torsten who took
up the burden of proof-reading (parts) of this dissertation. Your feedback helped
to further improve my line of argumentation and ruled out many inaccuracies and
linguistic errors. I take full responsibility for any remaining glitches.

At one of my first jobs (still during high school), a wise man told me that “somehow
the salami has to get on the bread”. I am deeply grateful to the Federal Ministry
of Economic Affairs and Energy (BMWi), the Excellence Initiative of the German
federal and state governments, the state of North Rhine-Westphalia, the Federal
Ministry of Education and Research (BMBF), as well as the European Union’s
Horizon 2020 research and innovation program for providing the funds to cover my
salary, conference travels, and the much-valued help of student research assistants.

Last but most importantly, I would like to thank my family and friends for their
love, friendship, and support. Above all, I am deeply grateful to my wonderful
wife Lina for supporting my dream of pursuing a PhD at COMSYS, even if that
meant moving to Aachen. Without your (and during the final steps also our lovely
daughter Laura’s) patience and understanding as well as the real-world perspective
and balance you provided, I would not have been able to finish this dissertation.

Contents

1 Introduction 1

1.1 Problem Analysis . 3

1.1.1 Different Actors in the Cloud Computing Landscape 3

1.1.2 Different Perspectives on Privacy in Cloud Computing 4

1.1.3 Core Problems for Privacy in Cloud Computing 6

1.2 Key Observation and Research Questions 8

1.3 Contributions . 9

1.3.1 Interplay of Contributions . 12

1.3.2 Attribution of Contributions 14

1.4 Outline . 16

2 Privacy in Cloud Computing 17

2.1 The Cloud Computing Paradigm . 17

2.1.1 Characteristics of Cloud Computing 18

2.1.2 Service and Deployment Models of Cloud Computing 20

2.1.2.1 Service Models . 20

2.1.2.2 Deployment Models 23

2.1.3 Actors in the Cloud Computing Landscape 24

2.2 Defining Privacy in the Cloud Computing Context 27

2.2.1 Types of Personal Information 29

2.2.2 Information Privacy in Cloud Computing 30

2.2.3 Privacy vs. Security . 31

2.3 Privacy Challenges of Cloud Computing 33

2.3.1 Data Handling Requirements and Legal Obligations 35

2.3.2 Attack Models . 37

2.3.3 Key Principles for Privacy-preserving Cloud Services 39

2.4 The Cloud-based Internet of Things 41

2.4.1 Network Scenario . 41

2.4.2 Privacy Concerns and Considerations 43

2.5 Summary . 43

3 Raising Awareness for Cloud Usage 45

3.1 Motivation . 45

3.1.1 Contributions . 46

3.2 MailAnalyzer: Uncovering the Cloud Exposure of Email Users 47

3.2.1 Cloud-based Email and Privacy 48

3.2.1.1 The Cloud-based Email Landscape 48

3.2.1.2 Privacy Problems of Cloud-based Email 51

3.2.1.3 Related Work . 51

3.2.2 Detecting Cloud Usage of Emails 53

3.2.2.1 Dissecting Email Headers to Detect Cloud Usage . . 53

3.2.2.2 Limitations . 55

3.2.3 Prevalence of Cloud Email Infrastructures 56

3.2.4 Real-World Cloud Usage of Received Emails 58

3.2.4.1 Datasets . 58

3.2.4.2 Impact of Cloud Computing on Email Users 60

3.2.4.3 Hidden Usage of Cloud-based Email Services 63

3.2.5 Summary and Future Work 65

3.3 CloudAnalyzer: Uncovering the Cloud Usage of Mobile Apps 66

3.3.1 Mobile Cloud Services and Privacy 68

3.3.1.1 The Landscape of Mobile Cloud Services 68

3.3.1.2 Privacy Risks of Mobile Cloud Services 71

3.3.1.3 Related Work . 71

3.3.2 Detecting Cloud Usage of Apps 73

3.3.2.1 System Overview . 73

3.3.2.2 Dissecting Traffic to Detect Cloud Usage 74

3.3.2.3 Integrating CloudAnalyzer into Android 76

3.3.3 Real-World Cloud Usage . 77

3.3.3.1 Cloud Usage on User Devices 77

3.3.3.2 Cloud Usage of Mobile Websites 81

3.3.3.3 Cloud Usage of Popular Apps 83

3.3.4 Summary and Future Work 87

3.4 Privacy-preserving Comparison of Cloud Usage 89

3.4.1 Related Work . 90

3.4.2 System Design . 91

3.4.3 Feasibility Study . 94

3.4.4 Summary and Future Work 97

3.5 Conclusion . 98

4 Data Handling Requirements-aware Cloud Infrastructure 101

4.1 Motivation and Vision . 101

4.1.1 A Data Handling Requirements-aware Cloud Stack 103

4.1.2 Contributions . 105

4.2 CPPL: A Compact Privacy Policy Language 106

4.2.1 Privacy Policies and Cloud Computing 107

4.2.1.1 Scenario . 107

4.2.1.2 Requirements . 108

4.2.1.3 Analysis of Privacy Policy Languages 109

4.2.2 Design of a Compact Privacy Policy Language 111

4.2.2.1 Specification of Policies 112

4.2.2.2 Compression of Policies 114

4.2.2.3 Interpretation of Policies 117

4.2.3 Evaluation . 118

4.2.3.1 Influence Factors on CPPL’s Performance 118

4.2.3.2 Comparison to Related Work 122

4.2.3.3 Applicability of CPPL 123

4.2.4 Summary and Future Work 126

4.3 PRADA: Practical Data Compliance for Cloud Storage 127

4.3.1 Data Handling Requirements in Cloud Storage Systems 128

4.3.1.1 Setting . 129

4.3.1.2 Formalizing Data Handling Requirements 130

4.3.1.3 Goals . 130

4.3.1.4 Related Work . 131

4.3.2 Supporting Data Handling Requirements 133

4.3.2.1 System Overview . 133

4.3.2.2 Cloud Storage Operations 135

4.3.2.3 Replication . 137

4.3.2.4 Load Balancing . 138

4.3.2.5 Failure Recovery . 139

4.3.3 Evaluation . 141

4.3.3.1 Implementation . 141

4.3.3.2 Benchmarks . 143

4.3.3.3 Load Distribution 147

4.3.3.4 Applicability . 149

4.3.4 Summary and Future Work 151

4.4 Conclusion . 152

5 Privacy-preserving Cloud Services for the Internet of Things 155

5.1 Motivation . 155

5.1.1 Contributions . 157

5.2 SCSlib: Transparently Accessing Protected IoT Data in the Cloud . . 157

5.2.1 The Cloud-based IoT and Privacy 158

5.2.1.1 Scenario and Entities 158

5.2.1.2 Security and Privacy Considerations 159

5.2.1.3 Related Work . 160

5.2.2 Protecting IoT Data in the Cloud 162

5.2.2.1 Flow of IoT Data . 162

5.2.2.2 Trust Point-based Security Architecture 163

5.2.2.3 Representation and Protection of IoT Data 165

5.2.3 Transparent Access to IoT Data for Cloud Services 168

5.2.4 Evaluation . 170

5.2.5 Summary and Future Work 173

5.3 D-CAM: Distributed Control in the Cloud-based Internet of Things . 175

5.3.1 Controlling IoT Networks . 176

5.3.1.1 Network Scenario and Problem Analysis 176

5.3.1.2 Security and Privacy Analysis 177

5.3.1.3 Related Work . 178

5.3.2 Distributed Configuration, Authorization and Management . . 180

5.3.2.1 Design Overview . 180

5.3.2.2 Appending to the Message Log 181

5.3.2.3 Management of Gateway Groups 182

5.3.2.4 Verifying the Message Log 183

5.3.2.5 Trimming the Message Log 184

5.3.3 Security Discussion . 185

5.3.4 Evaluation . 186

5.3.4.1 Processing Overhead 186

5.3.4.2 Storage and Communication Overhead 190

5.3.4.3 Comparison to Remote Management Approaches . . 191

5.3.4.4 Concluding Observations 192

5.3.5 Achieving Message Confidentiality 193

5.3.6 Summary and Future Work 193

5.4 Conclusion . 195

6 Decentralizing Individual Cloud Services 197

6.1 Motivation . 197

6.1.1 Contributions . 198

6.2 PriverCloud: A Secure Peer-to-Peer Cloud Platform 199

6.2.1 Problem Analysis and Trust Model 199

6.2.1.1 Scenario . 200

6.2.1.2 Trust Assumptions 201

6.2.1.3 Challenges . 202

6.2.1.4 Related Work . 204

6.2.2 Decentralizing Individual Cloud Services with PriverCloud . . 206

6.2.2.1 Building-up a PriverCloud 206

6.2.2.2 Operating a PriverCloud 208

6.2.2.3 Securing a PriverCloud 210

6.2.3 Evaluation . 213

6.2.3.1 Secure Storage . 214

6.2.3.2 Secure Communication and Authentication 215

6.2.3.3 Service Reliability Trade-off 219

6.2.4 Summary and Future Work 222

6.3 Conclusion . 223

7 Conclusion 225

7.1 Contributions and Results . 226

7.1.1 Raising Awareness for Cloud Usage 226

7.1.2 Data Handling Requirements-aware Cloud Infrastructure . . . 227

7.1.3 Privacy-preserving Cloud Services for the Internet of Things . 228

7.1.4 Decentralizing Individual Cloud Services 229

7.2 Core Problems Revisited . 230

7.3 Impact of Our Work . 232

7.3.1 Impact of Publications . 232

7.3.2 Impact of Open Source Activities 233

7.4 Future Research Directions . 234

7.4.1 User Acceptance . 234

7.4.2 Accountable Cloud Computing 235

7.4.3 Beyond Cloud Computing . 236

7.4.4 Beyond Privacy . 237

7.5 Final Remarks . 238

A Appendix 239

A.1 Full Example of a CPPL Policy . 239

A.2 Latencies Between Cloud Nodes . 243

Abbreviations and Acronyms 245

Bibliography 249

1
Introduction

Over the last years, cloud computing has revolutionized service delivery on the
Internet: Instead of operating own infrastructure, service providers rely on resources
centrally realized by cloud providers in large data centers. To this end, the cloud
computing paradigm promises abstracted access to a huge pool of virtually unlimited
resources such as processing, storage, and networking. Hence, service providers can
easily scale the amount of utilized resources, e.g., to handle spikes in demand while
not having to pay for underutilized resources outside peak loads. Furthermore,
cloud providers replicate resources to increase availability of cloud-hosted data and
services, e.g., in the case of energy outages or networking failures.

Not only services providers, but also corporate and private users of these services
benefit from the advantages of cloud computing. Cloud services (i) are often offered
for free (especially for private use) or at an affordable price without huge upfront
investment, (ii) allow access from nearly everywhere, (iii) offer failure-safe and re-
dundant storage of data and provisioning of computing power, (iv) provide high
usability through transparent integration into many devices and applications (e.g.,
smartphones and web browsers), and (v) obviate the need of maintaining or operat-
ing own infrastructure. For example, cloud computing allows companies to operate
their email services more flexible, scalable, and cost-efficient [BL07]. Likewise, pri-
vate users use cloud storage services, such as Dropbox and Google Drive, for storage
and synchronization of files [ISKČ11]. The advantages of cloud computing are es-
pecially important when considering the limited resources in computing, storage,
and power of mobile devices, such as smartphones, or of devices in the Internet of
Things (IoT) and Cyber-physical Systems (CPS) [HHK+16,HHH+17], where cloud
services are often used to synchronize data across devices and networks.

However, these benefits come at a price: Outsourcing services and data to the cloud
leads to serious privacy challenges. In contrast to traditional IT outsourcing, the
cloud computing landscape is technically more complex and opaque: Cloud services

2 1. Introduction

often subcontract other cloud services [PP15], e.g., to avoid operating their own
infrastructure, to cover peak demands, or to strengthen resilience against attacks.
This indirect use of resources leads to a situation where users of cloud services are
forced to trust an unknown number of third parties with their sensitive data. As
a consequence, it is often unclear under which jurisdiction users’ data falls, hence
providing users with only very limited legal protection [FM12]. Furthermore, users
might not even be aware that they are using cloud resources. From a different
perspective, the cloud computing paradigm leads to a centralization of data at a
small number of cloud services [Sky16], rendering those to valuable targets for attacks
[HHHW16]. The imminent privacy risks of cloud computing hinder the adoption of
cloud services for both, corporate and private users [ISKČ11,TPPG13,Rig17].
Importantly, these privacy concerns are not merely an academic problem. Recent
privacy incidents, such as the global surveillance disclosures emanating from Edward
Snowden [Gel13], demonstrate the fundamental privacy issues of today’s public cloud
services [TPPG13]. Resulting privacy concerns, missing trust, or legal restrictions
on data locality and data ownership make private and corporate users seek for al-
ternatives [ISKČ11,PB10]. To further emphasize these concerns, a survey from the
Intel IT Center among 800 IT professionals revealed that 78 % of organizations are
concerned that cloud services are unable to meet their privacy requirements [Int12].
In consequence, 57 % of organizations refrain from outsourcing regulated data to the
cloud. Hence, the lacking control over the treatment of data when it is outsourced
to cloud services scares away a large set of potential clients.
As a result, an inherent need to account for privacy in cloud computing surfaces.
First and foremost, privacy is a fundamental human right [UN48] and everyone
involved in delivering cloud services is ethically obliged to respect the privacy of
individuals. Indeed, users expect that their privacy is respected [JLG08] and hence,
respecting users’ privacy reduces cloud providers risks for loss of reputation and
credibility [Pea09]. Furthermore, providers of cloud infrastructure and especially
cloud services are often bound by legal constraints. Neglecting legal obligations can
lead to lengthy lawsuits and costly fines, e.g., the European Union’s new General
Data Protection Regulation (GDPR) imposes penalties up to 20 million Euro or 4%
of a company’s annual global revenue, whichever is greater, for not complying with
data protection regulation [GDPR16]. Finally, we identify clear business incentives
for providers of cloud infrastructures and cloud services to cater for privacy: Privacy
presents a unique selling point to the untapped market of clients that are currently
unable to outsource their data to the cloud as cloud services lack the technical
mechanisms to account for privacy requirements [Int12].
Indeed, we observe that cloud providers in the past already adapted to a small set
of privacy requirements. For example, to be able to sell its services to the US gov-
ernment, Google created the segregated “Google Apps for Government” and had it
certified at the FISMA moderate level, which enables use by US federal agencies and
their partners [Goo18b,MNP+11]. Furthermore, cloud providers open data centers
around the world to address location requirements of their clients [BRC10]. From a
research perspective, current efforts to increase the level of privacy in cloud comput-
ing are typically either deployed at the user side, e.g., using client side encryption
or obfuscation [PSM09, YWRL10, LYZ+13] as well as distribution of data between

1.1. Problem Analysis 3

Figure 1.1 Compared to the traditional client-server model, the cloud computing paradigm
consists of additional actors with more involved and often indirect interaction.

different cloud services [PP12, SMS13], or the service side, e.g., based on secure
execution domains realized on top of trusted hardware [CGJ+09, IKC09,SCF+15].

Despite these efforts, the problem of accounting for privacy in the cloud computing
landscape, i.e., considering privacy requirements and expectations during service
delivery [BSPW17], is still pressing. In this dissertation, we argue that providing
privacy in cloud computing often cannot be achieved without cooperation of the
different actors which are involved in the delivery of services. To this end, we first
identify clear incentives to account for privacy for all actors in the cloud computing
landscape. Based on this, we postulate that overcoming the privacy challenges of
cloud computing cannot be achieved by any of the actors alone. Instead, each actor
has to contribute the technical means under their control to collaboratively account
for privacy. Hence, in this dissertation, we consider the different perspectives on
privacy in cloud computing and propose technical approaches to address privacy
from the perspective of each actor in the cloud computing landscape.

1.1 Problem Analysis

To better understand the root causes for the privacy challenges of cloud computing,
we first study the different actors in the cloud computing landscape. We then derive
the different perspectives on privacy in cloud computing of the various actors, which
paves the way for our identification of core problems for privacy in cloud computing.

1.1.1 Different Actors in the Cloud Computing Landscape

In contrast to traditional service delivery in the Internet [Han00], cloud computing
involves additional actors. As shown in Figure 1.1, we identify four actors in the
cloud computing landscape with tighter and often indirect interaction compared to
traditional Internet services1. In the following, we describe these four actors, their
tasks in delivering cloud services, as well as their relationships and interdependencies.

1As we discuss in more detail in Section 2.1.2, we slightly simplify the traditional tiered archi-
tecture of cloud computing to ease presentation in the context of this dissertation. Furthermore,
we here limit our analysis to those four actors that are typically involved in delivering cloud ser-
vices and hence have a huge impact on privacy. We provide a discussion of all actors in the cloud
computing landscape and their roles in Section 2.1.3.

4 1. Introduction

Infrastructure Providers. As the foundation of cloud computing, infrastructure
providers deploy the necessary (physical) infrastructure for the realization of cloud
services. Most notably, this infrastructure includes computing (often in form of
virtual machines) and storage resources as well as broadband network connectivity.

Service Providers. Building on top of cloud infrastructure, service providers realize
cloud services, i.e., applications targeting private and corporate users. Cloud services
deployed by service providers can be accessed over the Internet.

Users. Utilizing cloud services, private and corporate users rely on resources deliv-
ered (directly) by service providers and thus (indirectly) by infrastructure providers.
Often, private users access cloud services for free (“paying” with their private infor-
mation instead, e.g., in the context of targeted advertising [Rob09,PHW17]), while
corporate users are predominately charged for using cloud services [FM12].

Legislators. Finally, legislators provide the legal frameworks that govern the pro-
visioning of cloud services and infrastructure. With respect to privacy, this most
notably includes data protection legislation. Given the technical scope of this dis-
sertation, we only cover the role of legislation when it directly influences technical
decisions. Other aspects of legislation, e.g., policy issues involved in changing privacy
regulations within the context of cloud computing, are considered out of scope.

These diverse actors do not only fulfill completely different roles in the cloud com-
puting landscape but also have different perspectives on privacy in cloud computing.

1.1.2 Different Perspectives on Privacy in Cloud Computing

These different perspectives on privacy of the various cloud actors mainly result from
different objectives and hence incentives to cater for privacy. Understanding these
different perspectives is important for our goal of deriving technical approaches to
account for privacy in cloud computing covering all these different perspectives.

Infrastructure and Service Providers

For infrastructure and service providers, the main motivation to cater for privacy is
the obligation to adhere to legal regulatory frameworks. Most notably, this includes
information privacy and data protection legislation that has now been established in
120 countries worldwide (more than 30 additional countries are currently working on
establishing such legislation) [Gre17]. While the precise regulations in these coun-
tries show notable differences, we can derive basic principles that most information
privacy and data protection legislation addresses [DEG+15, GDPR16]: (i) data on
individuals should only be collected for an explicit and legitimate purpose, (ii) col-
lected data on individuals cannot be disclosed to or shared with third parties without
individuals’ consent, (iii) stored data on individuals needs to be accurate and kept up
to date, (iv) individuals should be able to review stored data about them, (v) stored
data should be deleted as soon as it is no longer needed, and (vi) data cannot be
transmitted to locations with a weaker level of data protection.

1.1. Problem Analysis 5

Most notably, data protection legislation of a specific jurisdiction can even be ap-
plicable if an infrastructure or service provider is located outside this jurisdiction.
For example, the European Union’s GDPR is applicable whenever the user whose
data is being processed is based in the EU. Besides information privacy and data
protection legislation, providers also need to cater for other legislation. As an ex-
ample, the Health Insurance Portability and Accountability Act (HIPAA) [HIPA96]
requires that subcontractors have to comply with the same requirements as their
contractees when handling electronic health records [Gel09].

Infrastructure and service providers do not only have an incentive to respect privacy
to avoid prosecution and punishment, but also to put themselves in favorable mar-
ket positions. First, providers strive to avoid undesired consequences such as non-
acceptance of services or damage to reputation [Pea09,ZGW14]. Second, supporting
a wide range of privacy requirements (even beyond what is demanded by legislation)
enables the migration of privacy-sensitive or highly regulated services and data to
the cloud, hence opening new business opportunities [Int12]. While we identify clear
benefits for cloud infrastructure providers and cloud service providers to account for
privacy, resulting privacy-friendly cloud offers are virtually non-existing today.

Users

When considering the privacy perspective of users, we have to differentiate between
private and corporate users. Private users are mostly concerned about an invasion
of their privacy since they inadvertently give up control over their data when using
cloud services [ISKČ11, TPPG13]. For example, users are aware that their data
stored in the cloud could potentially be accessed by third parties, e.g., hackers, the
provider of the cloud storage service, or public authorities, such as law enforcement
agencies [ISKČ11]. Still, even if (experienced) users are aware of the consequences of
cloud usage in general, they still do not know who exactly can access their data. This
lack of knowledge and control is especially due to service providers’ usage of own
and third party infrastructure that hides who (companies and government agencies)
has access to data in the cloud. Since most cloud providers are located outside the
user’s legislation, contracts and other legislative measures only have a very limited
reach of binding applicability [FM12, Sil13]. Due to these concerns, private users
ultimately tend to refrain from using cloud-based services, especially for (highly)
sensitive data such as personal health records [GGJ17].

In contrast, for corporate users, the reluctance to using cloud services is mainly due
to compliance and security concerns [Wal16]. Especially for businesses, compliance
with legal and contractual obligations is important to avoid serious (financial) con-
sequences [MNP+11]. German tax legislation, e.g., forbids the storage of tax data
outside of Germany [Cor17]. Furthermore, the Sarbanes-Oxley Act (SOX) [SOX02]
requires accounting firms in the United States to retain records relevant to audits
and reviews for seven years. Contrary, the Payment Card Industry Data Security
Standard (PCI DSS) [PCI15] limits the storage duration of data to the time nec-
essary for business, legal, or regulatory purposes after which it has to be deleted.
Finally, contracts often require that sensitive data is not colocated with competitors

6 1. Introduction

Figure 1.2 In this dissertation, we distill four core problems for privacy in cloud computing,
culminating in a lack of control over data when it is outsourced to the cloud.

for fear of leaks or breaches [RTSS09]. Ensuring compliance with these requirements
is incredibly difficult with today’s cloud offers. Hence, corporate users often cannot
benefit from the advantages of cloud computing.

Legislators

When considering legislators, we have to consider that legislation is typically tech-
nology agnostic. Hence, the task of legislators is to define and govern a trade-off
between the privacy interests of data collectors, data processors, and users in gen-
eral without regulating cloud computing per se. Still, legislation has to account
for the specific setting of cloud computing. Most notably, legislators can be sup-
ported with technical approaches for implementing legal requirements, especially
with respect to transborder data flows. Since legislation often also follows national
interests, regional clouds, e.g., the “Europe-only” cloud currently discussed in the
EU [SBC+14,HMR+14], do not only aim at increasing governance and control over
data but are also a measure to strengthen the own economy.

1.1.3 Core Problems for Privacy in Cloud Computing

From these different perspectives of privacy, we distill four core problems for privacy
in cloud computing which we consider most important [HHHW16, HPH+17] and
analyze their interplay as visualized in Figure 1.2. We argue that overcoming these
core problems is key to strengthen privacy and consequently, to overcome inherent
adoption barriers. In the following, we discuss them in more detail.

P1: Technical Complexity and Missing Transparency

The cloud computing landscape is technically complex and lacks transparency: Most
importantly, the abstraction of resources in the cloud computing architecture hides
how (technically complex) cloud services are realized, leads to the indirect use of
resources (e.g., cloud services realized on top of cloud infrastructure), and hence
results in indirect and unknown contractual relationships. Indeed, cloud services
often subcontract other cloud services or rely on cloud infrastructure [PP15], e.g., to
avoid operating own infrastructure, to increase scalability, or to strengthen resilience
against attacks. In this situation with missing transparency of the technical and

1.1. Problem Analysis 7

contractual realization of cloud services, users are forced to trust an unknown number
of third party cloud services with their sensitive data—a situation that has become
too complex for users and developers of these services to grasp [GGJ17]. Likewise,
technical complexity and missing transparency make it difficult for users to assess
which level of privacy can be optimally achieved for a certain cloud functionality.

P2: Opaque Legislation

Given the technical complexity and missing transparency of cloud computing (P1),
it is often unclear under which jurisdiction users’ data falls, hence offering users only
very limited legal protection [FM12]. Furthermore, the jurisdiction under which data
falls can change over time, e.g., when data is moved between data centers in different
countries to balance load or to react to outages [LM10], especially if cloud providers
do not offer to contain data to specific regions. However, the applicable legislation
defines who can gain access to stored and processed data. For example, legislation
in many countries allows own government agencies, e.g., law enforcement, to access
and intercept data in the cloud [Gel13]. The resulting threat to users’ privacy
became evident with the 2013 global surveillance disclosures [Gel13]. At the same
time, in the face of the technically and contractually complex realization of cloud
services, even the providers of these cloud services often fail to know where, i.e.,
which other cloud services and cloud infrastructure, data (they are responsible for)
flows to [AGM10]. As a result, users cannot derive which legislation applies to their
data when it is stored and processed by a multitude of cloud services.

P3: Inherent Centrality

The cloud market is de facto centralized with a small number of services jointly
dominating the market. For example, Skyhigh reports that Amazon Web Services
(35.8 %) and Microsoft Azure (29.5 %) provide cloud infrastructure for more than
half of the cloud applications deployed on cloud infrastructure in the fourth quarter of
2016 [Sky16]. This centralization of cloud services comes at a price. First, centralized
services are a valuable target for attackers, exemplified by a reported 300 % increase
in attacked Microsoft user accounts from 2016 to 2017 [Mic17]. Second, concentrat-
ing storage and processing of user data at a few providers eases operations for law
enforcement agencies [PB10]. Finally, users only have a very limited set of alterna-
tive (potentially more privacy-friendly) cloud providers. Furthermore, the migration
between cloud providers is nowadays severely hindered by technical incompatibilities
and the lack of common standards [SHI+13]. Users are very much aware of the de-
scribed imminent risks of the centralized cloud computing landscape and these risks
significantly hinder the adoption of cloud computing [ISKČ11,TPPG13,GGJ17].

P4: Missing Control

Technical complexity and missing transparency, opaque legislation, as well as in-
herent centrality all lead to users’ loss of control over their data when it is sent

8 1. Introduction

to the cloud [CGJ+09, ISKČ11, TPPG13]. More precisely, any data that is trans-
ferred out of the control of its owner might be inadvertently forwarded to third
parties, used for unintended purposes, or handled in violation of legal require-
ments [PB10,TJA10,ZGW14]. Furthermore, missing transparency makes enforcing
existing requirements extremely difficult. These issues become especially problem-
atic, since the transfer of data to the cloud often happens imperceptibly, especially
for less technically proficient users. For example, mobile applications on smartphones
nowadays increasingly rely on cloud services [MBK+12,PHW17]—often without the
knowledge, let alone permission, of users. Notably, also cloud services experience
the problem of missing control, as they cannot influence the underlying cloud in-
frastructure or steer the placement of resources, e.g., to prevent colocation with
competitors in fear of accidental leaks or deliberate breaches [RTSS09]. As a result
of these issues, missing control has been identified as one of the major problems
and acceptance hurdles of cloud computing both for private [Pea09, ISKČ11] and
corporate users [Int12,Clo15].

These core problems for privacy in cloud computing clearly highlight an inherent
need to account for privacy in the cloud computing landscape. In the following, we
derive research questions that pave the way towards our contributions to increase
the privacy of cloud computing.

1.2 Key Observation and Research Questions

Besides offering enormous benefits, cloud computing also poses serious privacy chal-
lenges. To overcome these privacy challenges, we strongly believe that it is insuffi-
cient to only focus on a single actor in the cloud computing landscape and instead
propose to rely on cooperation between the different actors to realize more privacy
friendly cloud services. Nowadays, infrastructure providers have a decent under-
standing of the technical realization of their infrastructure but do not know about
the privacy requirements of providers and users of cloud services realized on top of
their infrastructure. Likewise, cloud service providers neither know about the pri-
vacy requirements of their users nor can they influence or at least derive information
on how the underlying cloud infrastructure is technically realized. Finally, both pri-
vate and corporate users have no means to influence how cloud services and cloud
infrastructures are operated. Hence, the actors in the cloud computing landscape
need to cooperate and each of the actors has to contribute the necessary technical
means under their control to strengthen privacy. From this key observation and the
four privacy challenges, we derive three research questions that we address with the
contributions of this dissertation.

Q1: How can infrastructure providers support service providers and cloud users
in executing control over privacy?

Only cloud infrastructure providers have detailed knowledge about and can control
the underlying technical realization of cloud infrastructure. If they knew about the

1.3. Contributions 9

privacy requirements of providers and users of cloud services, they could combine
this knowledge with their detailed understanding of the infrastructure to account
for their clients’ privacy requirements while provisioning cloud infrastructure.

Q2: How can service providers build privacy-preserving cloud services on top
of cloud infrastructure?

Cloud service providers are in a diametral position since they should account for
the privacy requirements of their users but have no influence on the (technical) real-
ization of the underlying cloud infrastructure, since major infrastructure providers
nowadays do not offer configurability with respect to privacy. Still, when closely
cooperating with their users, they can build and operate their cloud services as
privacy-preserving as possible given the limited support they receive from cloud
infrastructure providers today with respect to privacy.

Q3: How can users preserve their privacy when interacting with cloud services?

Cloud users are arguably the weakest actor in the cloud computing landscape since
they cannot influence how cloud services and cloud infrastructure are delivered.
Still, when provided with information on the characteristics of their cloud usage,
they could decide which (privacy-friendly) cloud services to entrust with their data.
Furthermore, they can support service and infrastructure providers by providing
them with their privacy requirements. Ultimately, users could even decide to com-
pletely move or stay away from all cloud services for certain functionalities with high
importance to their privacy.

In this dissertation, we provide answers to these research questions by proposing
technical systems that are deployed by the different actors in the cloud computing
landscape and address individual aspects underlying these questions. Hence, we
make an important step forward to account for privacy in the cloud computing
landscape and thus allow more private and corporate users to fully embrace the
benefits of cloud computing without having to sacrifice their privacy.

1.3 Contributions

To address these three research questions and hence account for privacy in the cloud
computing landscape, we present four distinct contributions in this dissertation:

C1: Transparency approaches to raise users’ awareness for cloud usage with respect
to the cloud exposure induced by email and smartphone usage based on net-
working features of cloud services and cloud infrastructure.

C2: Data handling requirements-aware cloud infrastructure which enables users to
specify their privacy requirements and thus allows infrastructure providers to
incorporate these requirements when selecting cloud storage nodes.

10 1. Introduction

C3: A platform for developing and deploying privacy-preserving cloud services which
supports non-security experts in protecting the privacy of users when providing
cloud services, showcased in the context of the cloud-based IoT.

C4: A decentralized approach to cloud computing where a certain set of cloud ser-
vices is shifted to resources that are provided in a secure peer-to-peer manner
by trusted entities.

These contributions evolve around our key observation of the imperativeness to ac-
count for all actors in the cloud computing landscape when aiming towards providing
strong and encompassing privacy for users of cloud services and cloud infrastructure.

To this end, Contributions C1 to C3 work in a setting where different actors col-
laborate to jointly provide privacy in cloud computing. This typically requires a
certain level of trust into the other involved actors. In contrast, Contribution C4
works in a setting where users completely distrust cloud providers and hence collab-
orate among themselves to realize an alternative to the centralized cloud computing
landscape. Together, our four contributions provide the technical means that infra-
structure providers, service providers, and users can rely on to strengthen privacy in
cloud computing. Furthermore, they jointly address the four core privacy problems
of cloud computing. In the following, we summarize our four contributions.

C1: Raising Awareness for Cloud Usage

Users are often unaware of their usage of cloud services, e.g., when sending and re-
ceiving emails or when interacting with mobile apps on their smartphones. However,
only if users are aware of (the extent of) their exposure to cloud services, they can
make informed decisions and exercise their right to privacy. As the first contribution
of this dissertation, we present approaches to provide users with transparency over
their individual exposure to cloud services along two deployment domains for cloud
services even less technically proficient users interact with on a daily basis.

MailAnalyzer, which we present in Section 3.2, targets the privacy risks of cloud-
based email, especially when the use of cloud resources is hidden from users. To this
end, we analyze header information of actually exchanged emails to detect cloud
services that have been hit on the path from the sender to the receiver of an email.
We use our approach to study 31 million emails, ranging from public mailing list
archives to the personal emails of 20 users. Our results show that as of today, 13 %
to 25 % of received emails are exposed to cloud services and that this exposure is
often unobservable, especially for less technically proficient users.

CloudAnalyzer, which we present in Section 3.3, uncovers the cloud usage of mobile
apps on off-the-shelf smartphones as our second deployment domain. Here, we
locally monitor the network traffic produced by mobile apps running on users’ devices
and use observed communication patterns to detect utilized cloud services. We
apply CloudAnalyzer to study the cloud exposure of 29 volunteers over the course
of 19 days. In addition, we analyze the cloud usage of the 5000 most accessed
mobile websites as well as the 500 most popular mobile apps from five different
countries. Our results reveal an excessive exposure to cloud services: 90 % of mobile

1.3. Contributions 11

apps use cloud services and 36 % of mobile apps used by our volunteers exclusively
communicate with cloud services.

We round up our work on raising awareness for cloud usage by studying the feasibility
and applicability of securely applying comparison-based privacy [ZHHW15] to nudge
users on the cloud usage of their mobile apps. As a result, we enable users to compare
their personal app-induced cloud exposure to that of their peers to discover potential
privacy risks resulting from deviating from “normal” usage behavior.

C2: Data Handling Requirements-aware Cloud Infrastructure

Most data that is outsourced to the cloud has data handling requirements, such as
storage location and duration, often imposed by law or other regulations. Our core
idea to support infrastructure providers in offering support for these requirements
is to let users annotate data accordingly before it is sent to the cloud. There, these
annotations can then be used by the infrastructure provider to select storage nodes.

As a foundation for making cloud infrastructure data handling requirements-aware,
we present CPPL, a compact privacy policy language, in Section 4.2. CPPL enables
users to express their data handling requirements and then compresses resulting
privacy policies by taking advantage of flexibly specifiable domain knowledge. Our
evaluation shows that CPPL reduces policy sizes by two orders of magnitude com-
pared to related work. We employ CPPL to realize highly privacy-relevant use cases
in the context of the cloud-based IoT and cloud-enabled big data to further prove
the large-scale feasibility of our approach.

To comply with expressed data handling requirements in cloud storage systems, we
propose PRADA in Section 4.3. PRADA introduces a transparent data handling
layer on top of commodity cloud storage systems, which empowers users to im-
pose data handling requirements and enables providers of cloud storage systems to
comply with these requirements. We implement PRADA on top of the distributed
database Cassandra and show in our evaluation that complying with data han-
dling requirements in cloud storage systems is practical in real-world deployments
such as microblogging and distributed storage of email. In combination, these two
approaches that form our second contribution overcome the communication and im-
plementation of data handling requirements as a major adoption barrier of cloud
computing for both corporate and private users.

C3: Privacy-preserving Cloud Services for the Internet of Things

Providers of cloud services have to adhere to various privacy regulations. How-
ever, since service providers cannot influence the underlying cloud infrastructure,
accounting for privacy regulations is an extremely challenging task, especially for
non-security experts. To illustrate how privacy-preserving cloud services can be re-
alized on top of commodity cloud infrastructure, we select a platform for globally
interconnected Internet of Things (IoT) devices as a use case, as the IoT requires
especially strong privacy protection. Here, we address privacy challenges arising
from managing data as well as devices and networks centrally in the cloud.

12 1. Introduction

Based on a security architecture for IoT data in the cloud [HHCW12, HHM+13,
HHMW14], we present SCSlib in Section 5.2. SCSlib is a security library that trans-
parently handles all security functionality that is required to access protected IoT
data in a user-centric and cryptographically enforced access control system. We thus
enable domain specialists who are not security experts to realize privacy-preserving
cloud services. As our evaluation shows, processing protected IoT data in a cloud
service is feasible. Furthermore, SCSlib’s caching scheme considerably improves
processing time compared to a naïve implementation of security mechanisms.
To put users back in control over their IoT devices and networks when these are
managed centrally in the cloud, we propose D-CAM, a distributed approach to con-
figuration, authorization, and management of IoT devices and networks, in Section
5.3. With D-CAM, we provide strong security guarantees by reducing the cloud to
a highly available and scalable store for control messages which realize configuration
of individual IoT devices, authorization of access to these devices, and management
of IoT networks. Our evaluation confirms that D-CAM adds only modest over-
heads and easily scales to large IoT networks. In summary, our third contribution
empowers non-security experts to develop privacy-preserving cloud services.

C4: Decentralizing Individual Cloud Services

Finally, we acknowledge that—besides all our efforts—some users might have such
strong privacy expectations and mistrust into cloud providers that they would prefer
to completely refrain from using cloud services. Furthermore, not all types of cloud
services, most notably individual services such as calendar and contact synchroniza-
tion, require the massive scalability of the cloud. Hence, we strive for a different,
arguably quite radical approach to delivering the remaining advantages of cloud
computing such as availability and reliability for this class of services. With Priver-
Cloud we present a secure peer-to-peer cloud platform in Section 6.2. PriverCloud
utilizes idle resources of devices operated by users’ close friends and family to realize
a trusted, decentralized system in which cloud services can be operated in a secure
manner. Our evaluation shows that commodity computing resources can indeed be
utilized to securely run existing cloud applications in a decentralized system. By
breaking up the inherent centrality of cloud computing, we enable even extremely
privacy-cautious users to benefit from the advantages of cloud computing.

1.3.1 Interplay of Contributions

In the context of this dissertation, we consider two different cooperation scenarios.
Within the scope of Contributions C1 to C3, we realize cooperation between differ-
ent actors in the cloud computing landscape, which requires a certain level of trust
into infrastructure and service providers. Contrary, Contribution C4 relies on coop-
eration solely between users to eliminate any trust assumptions for cloud providers.
In the following, we discuss how the four contributions presented in this dissertation
address the identified core privacy problems (Section 1.1) and our research ques-
tions (Section 1.2) in more detail. Subsequently, we highlight the relationship and
interplay of our contributions.

1.3. Contributions 13

Figure 1.3 Our contributions address the underlying research questions and the core problems
to privacy in cloud computing: technical complexity and missing transparency (P1), opaque
legislation (P2), inherent centrality (P3), and missing control (P4). Each contribution fully
addresses (), partially addresses (), or does not address () one of the identified problems.

As shown in Figure 1.3, Contribution C1 addresses the question of how users can
preserve their privacy when using cloud services (Q3) by raising awareness for cloud
usage. Providing users with information on their cloud exposure, this contribution
mainly addresses the problem of technical complexity and missing transparency (P1).
Still, we also raise users’ awareness for the problems resulting from opaque legisla-
tion (P2) and inherent centrality (P3). The information provided by Contribution
C1 serves as a foundation to overcome the problem of missing control (P4).

While focusing on enabling infrastructure providers to support service providers
and users in executing control over privacy (Q1), Contribution C2 also touches the
question of how cloud users can preserve their privacy (Q3). By providing users with
a mechanism to specify privacy requirements and using these to select complying
storage nodes, this contribution puts users back in control over their data (P4)
and addresses the problem of opaque legislation (P2). Finally, our privacy policy
language can also be used to select cloud providers based on privacy requirements,
paving the way towards breaking up the centrality of cloud computing (P3).

With the goal to support service providers in building privacy-preserving cloud ser-
vices (Q2), Contribution C3 also assists cloud users in preserving their privacy (Q3).
By cryptographically protecting access to IoT data and the configuration of IoT
networks, this contribution puts users back in control over their privacy (P4). Con-
sequently, we provide users with transparency over who can access their data and
control their networks (P1). Finally, by providing interoperability with different
cloud services, we ease the migration away from a centralized cloud landscape (P3).

Proposing a disruptive approach, Contribution C4 focuses on supporting users in
preserving their privacy (Q3), mainly by breaking up the centrality of cloud comput-
ing (P3) and thus putting users back in control over their privacy (P4). To this end,
this contribution enables users to move privacy-sensitive cloud services from cloud
infrastructure to a decentralized system solely consisting of trusted infrastructure.
In this process, we provide users with transparency over access to their data (P1).

14 1. Introduction

Figure 1.4 Contribution C1 raises awareness for cloud usage and hence motivates the other
three contributions. Contributions C2 and C3 can be used in combination. Furthermore,
concepts developed for Contributions C2 and C3 can also be applied to Contribution C4.

Regarding the relationships and interdependencies of our contributions, Figure 1.4
highlights the interplay between the individual contributions of this dissertation.
MailAnalyzer and CloudAnalyzer (C1) educate users about the need for enforcing
their privacy. These approaches make the necessity to account for privacy when using
cloud services evident to users and thus motivate the need for Contributions C2,
C3, and C4. Contributions C2 and C3 focus on infrastructure respectively service
providers and are hence complementary to each other. Indeed, we envision privacy-
preserving cloud services (C3) to interface with a data handling requirements-aware
cloud infrastructure (C2) to pass privacy requirements down the cloud stack, where
they could then, e.g., be considered when allocating storage resources. Likewise,
CPPL, our privacy policy language (C2) could be used to specify requirements,
such as the security level of cryptographic primitives, that would then be used
by cloud services built on top of SCSlib (C3). Finally, the concepts developed
in Contributions C2 and C3 can be transferred to our secure peer-to-peer cloud
platform PriverCloud (C4). More specifically, the transparent data handling layer
that we propose for PRADA (C2) could be equally beneficial to select storage and
processing nodes based on privacy requirements in PriverCloud (C4). Similarly, D-
CAM, our distributed control approach (C3) could ease the secure management of
devices in a PriverCloud deployment (C4).

The contributions presented in this dissertation nicely motivate and complement
each other. By combining them, and thus incorporating all actors in the cloud
computing landscape, we can make an important step forward towards more privacy-
friendly cloud computing.

1.3.2 Attribution of Contributions

Most parts of the contributions that we present in this dissertation have been de-
veloped in collaboration with students in the context of their Bachelor’s or Master’s
theses, student assistant positions, or research internships. The resulting publica-
tions that form the foundation for most parts of this dissertation were created with
the support of the respective co-authors of these publications. If not explicitly stated
otherwise, the author of this dissertation is responsible for the initial ideas and con-
cepts, the derived solution designs, the conceptualization of performed evaluations
and measurements, as well as the final publication of results. In the following, we

1.3. Contributions 15

briefly attribute the individual involvement of the respective students and co-authors
to our contributions and the resulting publications.
Contribution C1 (Chapter 3) consists of three parts. The initial feasibility of the
approach underlying MailAnalyzer (Section 3.2) has been studied by Mary Peyton
Sanford during her UROP research internship [San16b]. For the subsequent publi-
cation of our results [HSH17], Oliver Hohlfeld contributed the active measurements,
while the author of this dissertation reimplemented the approach, performed the
passive measurements, and conducted the evaluation. An initial description of the
idea underlying CloudAnalyzer (Section 3.3) has been published together with our
collaborators in the TRINICS project [HKH+16]. Erik Mühmer implemented the
core of CloudAnalyzer’s functionality within his Bachelor’s thesis [Müh14], David
Hellmanns integrated CloudAnalyzer into Android as part of his Bachelor’s thesis
[Hel15], and Arthur Drichel realized the framework for the large-scale evaluation of
mobile apps using CloudAnalyzer in his Bachelor’s thesis [Dri16]. Student assistants
Erik Mühmer and Jan Pennekamp subsequently further improved the implementa-
tion of CloudAnalyzer on Android. For the publication of our results [HPH+17],
David Hellmanns and Jan Pennekamp set up the infrastructure for performing and
evaluating the user study, Torsten Zimmermann contributed measurements of mo-
bile websites, and Arthur Drichel contributed to the large-scale evaluation of popular
mobile apps. The concept of comparison-based privacy used to nudge users on the
cloud usage of their mobile apps (Section 3.4) has initially been proposed by Jan
Henrik Ziegeldorf [ZHHW15] and was implemented by Patrick Marx in the context
of his Master’s thesis [Mar16]. The author of this dissertation adapted the security
design to the requirements of studying cloud usage and Ritsuma Inaba prototypi-
cally implemented this approach during his UROP research internship [Ina17]. For
our publication of first results [HIFZ17], student assistant Ina Berenice Fink revised
the implementation and helped in performing the evaluation.
The abstract idea of Contribution C2 (Chapter 4) was first motivated [HHW13a] and
later concretized [HGKW13] based on initial experiments performed in the context
of the Bachelor’s theses of Marcel Großfengels [Gro13] and Maik Koprowski [Kop13].
The design of CPPL (Section 4.2) evolved through numerous discussions with Jens
Hiller and was implemented by Sascha Schmerling over the course of his Master’s
thesis [Sch15]. For the publication of CPPL [HHS+16], Jens Hiller contributed the
analysis of related work, executed most of the evaluation, and developed the example
presented in Appendix A.1. The design of PRADA (Section 4.3) was implemented
on top of Cassandra by Johannes van der Giet in the scope of his Master’s the-
sis [Gie14]. Student assistant Erik Mühmer subsequently improved and extended
the implementation. Annika Seufert simulatively evaluated different load balancing
schemes in her Bachelor’s thesis [Seu15]. The author of this dissertation reimple-
mented the simulator and evaluated the influence of PRADA on load balancing.
For the publication of our approach [HMH+17, HMH+18], Roman Matzutt set up
the evaluation cluster, Erik Mühmer and Roman Matzutt executed the performance
evaluation, and Jens Hiller contributed to the design of failure recovery.
The underlying motivation for Contribution C3 (Chapter 5) and corresponding back-
ground information (Section 2.4) have been published in cooperation with our col-
laborators in the IPACS and SensorCloud projects [HHK+14, EHH+14, HHK+16].

16 1. Introduction

The security architecture for IoT data in the cloud that serves as foundation for this
contribution (Section 5.2.2.2) was jointly designed by René Hummen and the author
of this dissertation with the help of Daniel Catrein [HHCW12,HHM+13,HHMW14,
HHMW16]. In the context of their Bachelor’s theses, Roman Matzutt [Mat13] and
Marc Seebold [See13] contributed to the initial implementation of this security ar-
chitecture, an effort that was later continued by student assistants Benjamin As-
sadsolimani, Dominik Chmiel, Theo Dreßen, and Roman Matzutt. The design of
SCSlib (Section 5.2) was mainly implemented within the scope of the Bachelor’s the-
sis of Sebastian Bereda [Ber14], minor aspects with respect to access control were
derived from the Bachelor’s thesis of Aivar Kripsaar [Kri14]. For the publication of
SCSlib [HBHW14], Sebastian Bereda performed most practical aspects of the evalu-
ation. Our D-CAM approach (Section 5.3) was primarily implemented by Benedikt
Wolters as part of his Bachelor’s thesis [Wol14], minor aspects regarding efficient
signature schemes were derived from the Master’s thesis of Devran Ölcer [Ölc13]. In
the context of our publication of D-CAM [HWM+17], Roman Matzutt and Benedikt
Wolters jointly performed the evaluation.

The design of PriverCloud, our Contribution C4 (Chapter 6), was jointly developed
by Jens Hiller and the author of this dissertation. Jens Hiller implemented and
evaluated PriverCloud within the scope of his Master’s thesis [Hil14]. Subsequently,
Fritz Alder experimented with distributing the storage architecture of PriverCloud
in the context of his Bachelor’s thesis [Ald15]. We presented the motivation and
design decisions underlying PriverCloud in a publication [HHHW16].

1.4 Outline

This dissertation is structured as follows. In Chapter 2, we provide the foundation
for our work by introducing the cloud computing paradigm, discussing resulting pri-
vacy challenges, and introducing the concept of the cloud-based IoT which we use in
selected parts of this dissertation to highlight distinct privacy challenges. Chapter 3
presents our first contribution that raises users’ awareness for cloud usage along
the two application domains cloud-based email and mobile cloud computing. Our
results inform users about the necessity of considering privacy when using cloud
services and hence provide the motivation for our remaining contributions described
in Chapters 4 to 6: In Chapter 4, we describe our two approaches, a compact pri-
vacy policy language and a data handling requirements-aware cloud storage system,
that jointly realize data handling requirements-aware cloud infrastructure. Chap-
ter 5 presents our contribution to provide privacy-preserving cloud services for our
application domain, the IoT, that consists of a security library that transparently
handles security functionality on behalf of cloud services and a distributed approach
to handle configuration, authorization, and management of devices and networks in
the cloud-based IoT. Finally, we present our contribution to decentralize individual
cloud services by shifting them to a peer-to-peer network over trusted infrastructure
in Chapter 6. We conclude this dissertation with a summary of our contributions
and insights as well as a discussion of future research challenges in Chapter 7.

2
Privacy in Cloud Computing

As the foundation for our contributions presented in this dissertation, we first provide
an introduction into those topics relevant to understanding the concepts described
in the remainder of this dissertation. To this end, we begin with a description of the
cloud computing paradigm, its characteristics, service and deployment models, as
well as its relevant actors (Section 2.1). Subsequently, we turn our view to defining
privacy in the cloud computing context, derive different types of personal information
that require protection, and describe the differences and similarities of privacy and
security (Section 2.2). Based on this definition of privacy, we discuss the distinct
privacy challenges of cloud computing, especially data handling requirements and
legal obligations, resulting attack models, as well as key principles for designing
and implementing privacy-preserving cloud services (Section 2.3). We introduce the
concept of the cloud-based Internet of Things, which we use as an application domain
in selected parts of this dissertation (Section 2.4), before we conclude this chapter
with a brief summary (Section 2.5). During our description of the individual topics,
we mainly focus on those aspects that are particularly relevant for the scope of this
dissertation, i.e., the interaction and relationship of the individual stakeholders in
the cloud computing landscape and resulting privacy challenges.

2.1 The Cloud Computing Paradigm

While there are many anecdotes on the history and emergence of the cloud comput-
ing paradigm, the underlying idea of time-sharing of computing resources dates back
to the 1970s [Whi71,Pul15]. Yet, the perception of cloud computing as we know it
today has arguably been most influenced by the launch of Amazon’s Elastic Compute
Cloud in 2006 [Mil16]. From the early 2000s, Amazon had already worked on con-
cepts that later emerged into what is today known as Amazon Web Services (AWS)
[Mil16], mainly to solve problems Amazon faced when deploying their own systems.

18 2. Privacy in Cloud Computing

Given its emergence from the needs of companies and its rather young age of only
ten years, there is no single accepted definition of the term “cloud computing”.
Hence, our presentation of the cloud computing paradigm in the following mainly
combines the “Berkeley view of cloud computing” [AFG+09, AFG+10], the guide-
lines of the US-American National Institute of Standards and Technology (NIST)
[MG11,LTM+11], the vocabulary standardized in ISO/IEC 17788 [ISO14], and the
description from the textbook of Erl et al. [EMP13] to derive a broad picture of
what makes up cloud computing.

2.1.1 Characteristics of Cloud Computing

The most widely accepted definition of cloud computing has been proposed by NIST,
which considers “cloud computing [as] a model for enabling ubiquitous, convenient,
on demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly pro-
visioned and released with minimal management effort or service provider interac-
tion” [MG11]. From this brief definition, NIST derived five essential characteristics
of cloud computing [MG11], that have later been extended with a sixth characteris-
tic by Erl et al. [EMP13]. We summarize these characteristics in the following and
illustrate them with examples where appropriate.

On Demand Self-service and Usage. This characteristic enables cloud users to
provision cloud resources (such as computing or storage) themselves as required—
without the need for human interaction with each individual provider of cloud re-
sources. More specifically, cloud users can unilaterally request resources whenever
they require them and providers of cloud resources will automatically deploy these
resources as requested. For example, cloud providers such as Amazon or Microsoft
offer management consoles and application programming interfaces (APIs) to auto-
matically create, configure, manage, and terminate virtual machines (besides other
resources). When a user requests a new virtual machine, the cloud provider will
typically deploy the requested resource within seconds to minutes [MH12].

Independence from Device and Location. Cloud computing has to ensure that
its deployed resources are widely accessible, i.e., from a large range of devices and
locations, a property often referred to as ubiquitous or broad network access. To
this end, cloud computing mandates the use of standardized protocols and inter-
faces to access resources. These measures ease the integration of a heterogeneous
set of devices—ranging from server-grade computers and desktop deployments over
smartphones to embedded devices in the IoT and CPS. For example, file synchro-
nization services, such as Dropbox or Google Drive, enable users to access their files
on virtually any (Internet-capable) device from any location worldwide.

Resource Pooling and Multi-tenancy. In cloud computing, resources (such as pro-
cessing, storage, memory, and network bandwidth) are shared or pooled between
different users (referred to as multi-tenancy). To this end, resources are dynami-
cally assigned and reassigned based on the current demand of the customers of a
cloud provider. This handling of resources enables cloud providers to significantly

2.1. The Cloud Computing Paradigm 19

increase the utilization of their servers beyond the 5 % to 20 % estimated for tradi-
tional data centers [AFG+10]. Resource pooling typically is oblivious to the users
of cloud resources, i.e., they typically remain unaware of the fact that other users
are (currently) using the same resources. One key aspect of resource pooling (that
highly influences privacy) is that users have little influence of controlling properties
of deployed resources (e.g., the exact location). In the best case, users can control
resource properties at a coarse granularity, e.g., resources can often be requested
in a specific so-called availability region or zone that groups different data centers
which are in close proximity and typically in the same jurisdiction.

Rapid Elasticity. As one of the key advantages of cloud computing, users can
automatically scale up and down the cloud resources they use to adapt to varying
load demands. Typically, resources (such as virtual machines) can be requested and
released in a timely manner (in the order of minutes) and at a fine granularity (e.g.,
one virtual machine at a time) [AFG+10]. For example, Animoto, a cloud service
that turns user-uploaded images into music videos, was able to scale from 50 to 3400
Amazon EC2 instances (virtual machines) within only three days to keep up with
sudden user demand [Bar08].

Scaling computing resources up (and later down) by nearly two orders of magnitude
within days would have been impossible with traditional data centers [Bar08]. From
the users’ perspective, the elasticity of cloud resources often creates an impression of
unlimited scalability. We refer to this phenomenon as “virtually unlimited resources”
in the remainder of this dissertation.

Measured Service and Usage. All usage of cloud resources (such as storage space,
processing time, network bandwidth, and number of user accounts) is typically mea-
sured at a certain level of abstraction (e.g., CPU hours). Based on the measured
usage, cloud users are billed, often on a pay-per-use basis. As such, cloud users are
only charged for the period of time and amount of consumed resources. For example,
as of June 2018, Amazon charges between $0.0058 (general purpose t2.nano instance
with 1 virtual CPU and 0.5 GB RAM) and $26.688 (RAM optimized x1e.32xlarge
instance with 128 virtual CPUs and 3904 GB RAM) per hour for its Amazon EC2
on demand instances in its “US East” region [AWS18b]. These costs can be reduced
significantly, e.g., by using longer-term contracts or by bidding on spare capacity.

Notably, measuring service usage is relevant beyond billing purposes as it provides
users and providers with transparency on used resources as part of the general
monitoring of IT resources. Hence, even cloud services that can be used free of
charge typically measure the usage of resources. For example, file synchronization
services, such as Dropbox or Google Drive, measure storage space to enforce quotas
of their free to use offers.

Failover and Resilience. To guarantee availability and reliability of resources even
in the face of outages or systems failures, failover and resilience mechanisms of cloud
computing replicate these resources across different locations. When a defect of one
resource instance is detected, all requests for this resource will automatically be
served by one of the replicas. For example, the distributed cloud storage system
Cassandra allows to replicate stored data in the same data center (but not in the

20 2. Privacy in Cloud Computing

Figure 2.1 The different service models of cloud computing offer an increasing level of ab-
straction (especially in contrast to traditional on-premise hosting) and hence also shift more
control and responsibilities from users to cloud providers (figure adapted from Chou [Cho10]).

same rack) or in a different data center [LM10]. Replication to different, often physi-
cally remote, data centers limits the impact of complete data center failures, such as
the storm-related six-hour outage of a complete Amazon data center in June 2012
that impacted popular services, e.g., Netflix, Pinterest, and Instagram [McM12].
Furthermore, the intercloud paradigm even proposes to replicate resources across
different cloud providers [BRC10], e.g., to protect against system failures resulting
from programming or configuration errors such as the typing error causing a nearly
six-hour outage of Amazon’s storage service in February 2017 that impacted major
parts of the Internet [Kin17].

To additionally differentiate cloud computing from the earlier concepts of grid and
cluster computing, Buyya et al. [BYV+09] propose characteristics such as the type
of physical computers, the size of systems, and application scheduling strategies.
However, in the context of this dissertation, it is instead important to study the
different service and deployment models of cloud computing to identify the relevant
aspects and actors with respect to privacy.

2.1.2 Service and Deployment Models of Cloud Computing

While delivering the different characteristics of cloud computing, different service
and deployment models define at which granularity resources can be consumed and
who can gain access to these resources. In the following, we present and discuss
these service and deployment models based on the definition of NIST [MG11] and
the insights of Erl et al. [EMP13].

2.1.2.1 Service Models

Essentially, the different service models of cloud computing as shown in Figure 2.1
define how much control users have over the provided stack of resources. Conse-

2.1. The Cloud Computing Paradigm 21

quently, more control also implies more responsibility for the underlying technical
realization and hence also for taking care of privacy protection measures. In tradi-
tional on-premise deployments (left side of Figure 2.1), users have control over and
are responsible for the complete technology stack. In contrast, NIST defines three
service models for cloud computing [MG11] that offer access to resources at different
levels of abstraction (right side of Figure 2.1). We discuss these three service models
in increasing level of abstraction in the following.
Infrastructure as a Service (IaaS). As the foundation of the cloud computing
paradigm, the Infrastructure as a Service (IaaS) service model provides users with
fundamental computing resources such as processing, storage, networking, and load
balancing. While users of IaaS services lack direct control over the underlying (hard-
ware) infrastructure, they have full control over the operating system, block and file-
based storage facilities, and can deploy any desired software packages. Resources
provided by IaaS are typically not pre-configured to allow for a high level of cus-
tomization. This flexibility, however, places large parts of the administrative burden
on the users of IaaS. From a technical perspective, IaaS is predominantly realized
using virtual machines. With respect to networking resources, users of IaaS typ-
ically have limited control over selected networking functionality such as firewalls
by utilizing dedicated high-level APIs. Examples for IaaS include the computing
resources (i.e., virtual machines) offered by Amazon Elastic Compute Cloud (EC2),
Microsoft Azure, Google Compute Engine, and Rackspace Cloud Servers.
Platform as a Service (PaaS). With the goal to ease the deployment of self-
developed applications in the cloud, Platform as a Service (PaaS) services provide
their users (i.e., application developers) with a fitting development infrastructure
and environment. Hence, PaaS can be considered a combination of a software de-
velopment kit (SDK) and a corresponding execution environment (including web
server and storage) that runs massively distributed in the cloud. Most notably, as
a result of the abstraction provided by PaaS users lack control over the cloud in-
frastructure (such as operating system, storage, or networking). Consequently, they
are also not responsible to set up and administer the underlying infrastructure and
its composition into a highly scalable system—a fact that is often considered as a
major advantage of PaaS over IaaS. Still, users of PaaS are in control over the exe-
cuted software (predominantly developed by themselves) and typically can configure
or parameterize (to a limited extent) the execution environment used to run their
software. Notable examples for the diverse range of PaaS services are AWS Elastic
Beanstalk, Google App Engine, Heroku, and Force.com. These are then used by
service developers as a foundation for realizing applications for end users.
Software as a Service (SaaS). Providing the highest level of abstraction, Software
as a Service (SaaS) services provide users with access to applications that run in the
cloud. Such applications can be accessed by a wide range of devices such as desktop
deployments, smartphones, or embedded IoT devices and CPS over a web interface
or a dedicated API. Typically, SaaS is used to provide a cloud service (following
commercial interests) to a large group of (potential) users. In this setting, users do
neither control the underlying cloud infrastructure nor the execution environment
and individual services. Yet, users of SaaS services might have (limited) possibilities
to configure or parameterize a service they use. From the perspective of users,

22 2. Privacy in Cloud Computing

Figure 2.2 Deviating from the NIST service model with IaaS, PaaS, and SaaS, in this disser-
tation, we differentiate cloud offers by their role into cloud infrastructure and cloud service. In
a complex deployment, one cloud offer can act as both, cloud service and cloud infrastructure.

interacting with a SaaS service is the same as interacting with any other web service,
since the abstraction offered by the SaaS service model effectively hides that a specific
application or service is run in the cloud. Examples for popular SaaS services include
Google’s G Suite (including Gmail, Google Docs, and Google Drive), Microsoft Office
365, Dropbox, and Slack.

Each of these three service models can be delivered by a different provider [AKK12],
leading to an indirect usage of cloud resources where cloud providers often sub-
contract other cloud providers [PP15]. While these three service models are often
visualized (and interpreted) as a layered stack [MG11,AKK12]—similar to the OSI
model for communication systems [Zim80]—this is not implied by the cloud com-
puting paradigm per se. For example, a SaaS service could also be directly realized
on top of physical hardware instead of relying on the abstraction provided by IaaS
and PaaS. Similar to performance optimizations in networking stacks by (partially)
omitting layers [AHA+14], service providers of larger SaaS services strive to increase
the performance of their services by avoiding the use of IaaS and PaaS. For exam-
ple, FreeAgent, a UK-based online accounting SaaS provider, migrated from virtual
machines deployed at different IaaS providers to colocation hosting to increase per-
formance, reduce costs, and strengthen reliability [Hea17].

While the three service models of cloud computing, IaaS, PaaS, and SaaS, initially
seem to be well-defined and the mapping of cloud offers to one of the service models
straightforward, we—similar to Armbrust et al. [AFG+10]—argue that there is no
clear line between IaaS, PaaS, and SaaS. Furthermore, from a privacy perspective,
differentiating between service models should be mainly performed based on their
interaction and data flows instead of vague technical boundaries. Hence, in the
scope of this dissertation, we define a different view on delivering cloud services
that focuses on the interaction between these services instead of the (technical)
type of service they deliver. As shown in Figure 2.2 (middle), we only differentiate
between cloud infrastructure and cloud service. Here, cloud infrastructure defines
cloud offers that provide infrastructure to another cloud offer (predominantly IaaS
and PaaS services, but can also apply to SaaS services used as a building block of
another SaaS service). Likewise, cloud services use cloud infrastructure to provide a
service to users and other cloud offers. This mainly applies to PaaS and SaaS in the
NIST service model. Depending on the specific deployment scenario, each cloud offer

2.1. The Cloud Computing Paradigm 23

takes the role of cloud infrastructure or cloud service or both. Most importantly, a
single cloud offer can act as both, cloud infrastructure and cloud service, when it
uses cloud infrastructure (as a cloud service) and provides cloud infrastructure to
another cloud offer at the same time (right part of Figure 2.2). By modeling roles
of cloud offers using this model, we provide more flexibility than the NIST service
model as we also support more complicated deployments such as a technology stack
of four or even more cloud offers realized on top of each other.

2.1.2.2 Deployment Models

Orthogonal to different cloud service models, i.e., at which level of abstraction cloud
services are provided, is the question how these services are deployed. More specifi-
cally, who owns and governs the cloud environment, how large the cloud environment
is, and who can gain access to it. To classify different types of deploying cloud ser-
vices, NIST defines the following four cloud deployment models [MG11].

Public Cloud. In a public cloud deployment, the cloud environment is provisioned
by a third party cloud provider (corporate, academic, or government organization)
over the Internet and in general is publicly accessible to anyone. Services and in-
frastructure provided in a public cloud are typically offered for a fee (especially for
infrastructure) or are commercialized using other means, such as (targeted) adver-
tisement [EMP13] or monetizing user profiles (especially for services). A public cloud
is realized on the premises of the respective cloud provider, which is also responsible
for setting up and maintaining the deployed services and resources. The public cloud
deployment model is the predominant and most widely known deployment model
for cloud services and all examples we presented for the different service models are
realized as public clouds deployments. Hence, the largest cloud deployments rely on
the public cloud model, which makes it the main focus of this dissertation.

Community Cloud. While similar to public clouds from a technical perspective, the
notable difference from an organizational perspective is that access to service and
resources in a community cloud is restricted to a specified group of users, called com-
munity. Typically, such communities have a common denominator such as shared
concerns regarding security, policy, and compliance or specific performance and avail-
ability requirements. Users from outside the community generally cannot access the
services and resources provisioned in a community cloud. A community cloud can
either be operated and managed by one or more of the community members or
provided by a third party. Often, community clouds are smaller in size compared
to public clouds and raise fewer privacy concerns. Examples of community clouds
include the ENX network of European vehicle manufacturers and the Sciebo stor-
age cloud operated by universities and research institutions in the German state of
North Rhine-Westphalia.

Private Cloud. In contrast to public and community clouds, a private cloud is
exclusively used by a single organization. Hence, all users of the private cloud, e.g.,
different business units, are part of the corresponding organization. Private clouds
are an attempt to benefit from the advantages of cloud computing such as flexibility
and scalability, without having to give up control over the deployment of and access

24 2. Privacy in Cloud Computing

to resources. In fact, private clouds a typically realized in own, on-premise or in
traditional colocation data centers. Given the required scale for such deployments
(and the resulting upfront investment), private clouds are predominantly utilized by
large enterprises while small and medium-sized enterprises (SMEs) shy away from
the resulting management and cost overheads. In private clouds, most of the privacy
problems and concerns discussed in this dissertation do not apply. Organizations
that revealed that they are relying on privates clouds include The Hartford [IBM14]
and the Volkswagen Group [Plu17].

Hybrid Cloud. Finally, a hybrid cloud deployment combines at least two of the
other deployment models (public, community, or private). Notably, the deployments
that make up the hybrid cloud still remain independent and are often operated by
different providers. Creating and managing hybrid cloud deployments is often a
challenging and complex task because of differences between deployments, lack of
standardized interfaces, and multiple providers involved. Motivations for a hybrid
cloud deployment include keeping private data in-house while combining it with
cloud services run in a public cloud or using public cloud infrastructure to handle
temporary spikes in demanded capacity. For larger enterprises, combining public
and private cloud in a hybrid cloud deployment model hence can offer one approach
to benefit from the cloud advantages while catering for privacy and compliance
requirements, e.g., by only outsourcing non-critical data to a public cloud. One
example for a hybrid cloud deployment is the online accounting service FreeAgent,
which operates its computing resources in a private cloud but still relies on public
cloud services to provide storage and domain name system (DNS) [Hea17].

Out of these four deployment models, the public cloud deployment model is the most
popular and widely used—especially by private and (smaller) corporate users that
lack the resources to operate an own private cloud or participate in a community
cloud. Likewise, the public cloud deployment model certainly is the most challenging
one with respect to our goal of accounting for privacy. Thus, we focus on providing
privacy in public cloud deployments in this dissertation and if not stated explicitly
otherwise, use the term “cloud” synonymously for “public cloud” in the following.

2.1.3 Actors in the Cloud Computing Landscape

The different service and deployment models of cloud computing make evident that
the cloud computing paradigm leads to more actors that are involved in delivering
a (web) service compared to the client-server model prevalent on the Internet so
far [Han00]. As part of its cloud computing reference architecture, NIST defines
five major actors [LTM+11]: cloud consumer, cloud provider, cloud auditor, cloud
broker, and cloud carrier. In the scope of this dissertation, we evolve this reference
architecture with respect to the different actors to better cater for different respon-
sibilities with respect to privacy. Most notably, we split NIST’s cloud provider
into separate infrastructure and service providers, sharpen the definition of cloud
consumer (user in our model), and add the role of a legislator.

In the following, we detail how the privacy-centric actor model derived for this disser-
tation (briefly introduced in Section 1.1.1) integrates into NIST’s cloud computing

2.1. The Cloud Computing Paradigm 25

Figure 2.3 The cloud computing landscape consists of different actors and their relationships
and interplay. We mark the three actors that are most important for privacy (from a technical
perspective) and are hence in the focus of this dissertation in dark gray.

reference architecture. Figure 2.3 introduces the different actors and their relation-
ships. Actors highlighted in dark gray play a major role in (technically) accounting
for privacy in the cloud computing landscape and are thus in our focus.

Cloud Providers. To form the technical foundation for cloud computing, cloud
providers make cloud offers available to all interested parties [LTM+11]. Notably,
cloud offers are delivered at different layers of abstraction. To account for these dif-
ferent layers and hence the interaction and relationships of different cloud providers
and resulting privacy challenges, we—in contrast to traditional actor models for
cloud computing [LTM+11]—introduce a clear distinction between two different
types of cloud providers: infrastructure providers and service providers. In this
model, infrastructure providers deliver infrastructure to other cloud providers and
hence mainly realize IaaS and PaaS, but also SaaS can be provided as infrastruc-
ture to other SaaS services. The infrastructure deployed by infrastructure providers
consists of the (physical) resources required for operating cloud services, i.e., com-
puting and storage resources as well as broadband network connectivity. With in-
creasing level of abstraction, these resources also become more abstract, e.g., in
the form of virtual machines and virtual network interfaces, distributed file systems
and databases, as well as runtime environments and execution stacks. Using cloud
infrastructure deployed by infrastructure providers, service providers realize cloud
services that mostly consist of PaaS and SaaS in the NIST definition of cloud ser-
vices [MG11]. Such cloud services either target private and corporate users or serve
as a foundation for other cloud services (cf. Figure 2.2) and can usually be accessed
over the Internet. Service providers typically rely on APIs and/or SDKs offered by
infrastructure providers to realize their services. Cloud providers (both at the infra-
structure and service level) play a vital role in accounting for privacy in the cloud
computing landscape as they control the physical, technical, and organizational real-
ization of cloud services. We propose technical mechanisms that infrastructure and
service providers can deploy to account for privacy in Chapters 4 and 5, respectively.

Users. Cloud users are private and corporate actors which utilize cloud services
that are deployed by service providers. Typically, cloud users and cloud providers

26 2. Privacy in Cloud Computing

agree on some sort of business relationship or contract [LTM+11], irrespective of
whether the service provider charges a fee for using its service or not. Cloud users
rely on standardized interfaces and protocols to access cloud services. These in-
terfaces and protocols range from traditional Internet protocols over web interfaces
to dedicated APIs. While users typically only directly interact (and hold business
relationships) with service providers, they are indirectly also exposed to the infra-
structure providers that realize the foundation for their utilized cloud services. This
indirect usage cannot be controlled by users nowadays and often occurs obliviously,
especially for less technically proficient users. Yet, users are those actors in the cloud
computing landscape that are impacted most with respect to their privacy and ar-
guably often the weakest link. To make users aware of their impacted privacy and
to put them back in control, we provide technical approaches that can be deployed
by users to account for their own privacy in Chapters 3 and 6.

Legislators. Providing the underlying legal frameworks, legislators impose restric-
tions on service and infrastructure providers on how they can deploy their cloud
offers. Likewise, also users are affected by legislation. While private users are mostly
protected by legislation, e.g., through data protection laws, corporate users are of-
ten hindered from using cloud services due to various legislation. When focusing
on privacy, we are mostly concerned with data protection legislation, but also other
compliance concerns have to be considered. Furthermore, legislators often also have
own (financial) interests and might impose laws and regulations not only for the
greater good but also to strengthen their own economy, e.g., with regional cloud
offers [SBC+14,HMR+14]. Within the technical scope of this dissertation, we cover
legislators only when they directly influence technical decisions and consider other
aspects such as policy issues out of scope. From our technical perspective, we sup-
port legislators by providing transparency over privacy problems (Chapter 3) and
by introducing technical means to comply with legal requirements, especially with
respect to transborder data flows (Chapter 4).

Auditors. The task of auditors is to act as independent and trusted third parties to
verify that cloud offers are indeed provided according to agreed-upon service level
agreements (SLAs). Typically, audits are performed by reviewing objective evidence,
e.g., specially crafted audit logs [SK99,SYC04,WBDS04], and hence verifying that
the operations of cloud providers conform to their promises [LTM+11]. While not
specific to cloud computing, auditing is especially important for cloud computing
with its complex, dynamic, and often indirect trust relationships. In the context of
cloud computing, auditing can, e.g., be used to verify that a cloud provider indeed
stores all data and does not delete data that is rarely or never accessed to cut down
costs [WWRL10]. Furthermore, audits can assess that data retention policies are
adhered to, data has not been modified, and data archival requirements are met
[LTM+11]. Hence, auditing concerns a wide range of aspects that can be covered by
SLAs—also outside privacy and security requirements. With respect to this disserta-
tion, auditors nicely complement our approach for data handling requirements-aware
cloud infrastructure (Chapter 4) to ensure that cloud providers indeed operate our
approaches as intended. Furthermore, our awareness approaches presented in Chap-
ter 3 are a valuable tool for auditors when checking the compliance of email offers
and smartphone apps with privacy requirements in the cloud computing context.

2.2. Defining Privacy in the Cloud Computing Context 27

Brokers. The concept of cloud brokers aims at a scenario where the cloud computing
landscape becomes too complicated for users to manage the integration and compo-
sition of different services [LSW04, LTM+11], e.g., in the envisioned move towards
intercloud deployments, where users combine resources of different cloud providers
in an automated fashion [GB14]. In this setting, cloud brokers act as intermediaries
between users and cloud providers to provision services and resources. More specif-
ically, cloud brokers take care of managing usage and delivery of cloud services and
resources by negotiating contracts on behalf of users and cloud providers [LTM+11].
Employing cloud brokers might provide economic advantages for all involved actors,
i.e., users, service providers, and infrastructure providers [GGBM15]. When assess-
ing the impact of brokers on privacy, we find that cloud brokers can assist users in
selecting cloud offers based on privacy or compliance requirements, e.g., with respect
to data location or storage duration [GGBM15]. In the context of this dissertation,
brokers could rely on the privacy requirements expressed using our compact privacy
policy language (Section 4.2) when choosing between different cloud offers.

Carriers. From a technical perspective, cloud carriers provide connectivity and
transport of data between users and cloud services (and hence also the underlying
cloud infrastructure) [LTM+11]. In today’s public cloud deployments, the role of
cloud carriers does not notably deviate from those of the carriers involved in deliv-
ering traditional Internet services. Hence, cloud carriers do not pose specific privacy
challenges in addition to those of traditional carriers on the Internet. Still, with
a possible move towards intercloud deployments [GB14], users (and possibly cloud
service providers) might have the option to choose between multiple cloud carriers
with different properties. In such a situation, the choice between different carri-
ers could be influenced by privacy requirements, e.g., expressed using our compact
privacy policy language (Section 4.2).

To conclude, our introduction into cloud computing makes evident that the cloud
computing landscape is diverse and versatile. We have identified numerous ways of
interplay between the different actors—and often interactions occur indirectly and
are unobservable for the actual users whose privacy is then put at stake.

In the remainder of this chapter, we take a deeper look at the privacy challenges
that result from the distinct characteristics of cloud computing.

2.2 Defining Privacy in the Cloud Computing Context

Besides many advantages, cloud computing—compared to traditional deployments
in data centers—also introduces additional challenges with respect to privacy. In the
following, we first review different definitions of privacy and then derive a common
definition that serves as foundation for the remainder of this dissertation.

The definition of the term “privacy” widely varies across different fields and of-
ten depends on the specific context [RG10, Leh14, ZGW14]. Hence, it is important
to understand these different perceptions of privacy as a foundation to judge on
different approaches to account for privacy and to understand which aspects indi-
vidual approaches address. Different authors propose valuable surveys, taxonomies,

28 2. Privacy in Cloud Computing

and classifications [Sol06,Hol07,RG10,SDX11,FWF13,Leh14]. In the following, we
summarize these definitions mainly along the lines of Finn et al. [FWF13] and vom
Lehn [Leh14] to derive a definition of privacy for the context of this dissertation.

Already in 1890, Warren and Brandeis [WB90] formulated the “right to be let alone”
as a response to the emergence of instantaneous photographs that were taken with-
out prior consent—which was considered a serious invasion of individual privacy by
Warren and Brandeis [RG10]. As a consequence, they expressed the need for estab-
lishing a right to privacy in law [Leh14]. Reacting to the emergence of computers,
Westin in 1967 proposed to define privacy as “the claim of individuals, groups, or
institutions to determine for themselves when, how, and to what extent information
about them is communicated to others” [Wes67], a concept that we nowadays refer
to as information privacy [Wes03]. This concept has further emerged into the OECD
guidelines on the protection of privacy and transborder flows of personal data from
1980 [OECD80], which arguably constitute the first internationally agreed-upon col-
lection of privacy principles.

Westin’s definition of privacy also laid the foundation for the right to informational
self-determination, which was established during the population census ruling of the
German federal constitutional court in 1984 [HS09,Leh14]. Important key principles
of this ruling, such as the concepts of data minimization and purpose specification,
have been included in the EU data protection directive 95/46/EC [EU95], where
they became binding for the complete EU. Recently, discussion and legislation in
the EU and Argentina coined the “right to be forgotten” [Man13,Ros12] as an option
for users to escape their past by having old data deleted, e.g., in public media or
databases, or oppressed, e.g., from search results. This idea has been concretized as
the “right to erasure” in the EU’s new GDPR [GDPR16].

To fully embrace the scope of privacy, it is important to clearly identify different cat-
egories of privacy. As a first step in this direction, Solove [Sol06] and Kasper [Kas05]
take a reactive approach to classifying privacy into different categories by studying
different ways of how privacy can be breached [FWF13]. Solove [Sol06] provides a
taxonomy to understand privacy breaches consisting of four categories: (i) infor-
mation collection through surveillance and interrogation; (ii) information processing
where breaches range from aggregation and identification over insecurity and sec-
ondary use to exclusion; (iii) information dissemination caused by breach of confi-
dentiality, disclosure, exposure, increased accessibility, blackmail, appropriation, and
distortion; and (iv) invasion resulting from intrusion and decisional interference.

Likewise, Kasper [Kas05] derives a typology of three privacy invasions from the differ-
ent principal activities that lead to an invasion of privacy: (i) extraction by deliber-
ately taking information from a person; (ii) observation through actively surveilling
a person; and (iii) intrusion by directly interfering with the life of a person. As
these approaches focus on classifying already occurring privacy breaches, they focus
on stopping (known) harm (mostly through legislation). While this is valuable to
overcome privacy challenges for existing fields, accounting for privacy in emerging
technologies such as cloud computing instead requires to proactively establish tech-
nology agnostic privacy rights that prevent harm from yet unforeseen privacy risks
in the first place [FWF13].

2.2. Defining Privacy in the Cloud Computing Context 29

Pe
rs

on
al

in
fo

rm
at

io
n Personally identifiable

information (PII)
Key attributes Name, social security number, . . .
Quasi-identifiers Date of birth, address, IP address, . . .

Sensitive information

Membership Political groups, religious groups, . . .
Demography Gender, nationality, . . .
Interests and habits Web activity, shopping history, . . .
Finance Account balance, finan. transactions, . . .
Health Medical records, diseases, . . .
Intellectual production Ideas, inventions, . . .

Table 2.1 Personal information can be classified into the stricter notion of personally identi-
fiable information (PII) and the broader notion of sensitive information.

In contrast, proactively focusing on aspects of privacy that should be protected en-
ables individuals, governments, and other organizations to evaluate the impact of
their activities on users’ privacy and hence develop and deploy appropriate measures
to protect privacy [FWF13]. To this end, Clarke [Cla97] defines four categories of
privacy: (i) privacy of the person—also known as bodily privacy—guarantees the
integrity of a person’s body, e.g., with respect to mandatory vaccination, body tissue
sampling, or sterilization; (ii) privacy of personal behavior—also referred to as media
privacy—concerns behavioral aspects ranging from political activities over religious
practices to sexual orientation and preferences; (iii) privacy of personal communi-
cation—sometimes called interception privacy—enables persons to communicate by
various means without being routinely monitored by any third party; and (iv) pri-
vacy of personal data—or information privacy—encompasses that data of persons
is not automatically available to third parties and that persons stay in control over
their data and its usage if it is in possession of any third party.

To account for recent technology advances, Finn et al. [FWF13] refine Clarke’s four
privacy categories and propose three additional categories: (v) privacy of thoughts
and feelings allows persons to keep their thoughts and feelings private, especially if
they do not (directly) lead to behavior; (vi) privacy of location and space enables
persons to move around in public spaces without being tracked or monitored; and
(vii) privacy of association allows people to freely associate with anyone they want.

These various definitions showcase the different perspectives and broad scope of
definitions of privacy, leading to the necessity to focus on a specific concept of
privacy. Within the technical context of this dissertation, it is especially important
to focus on users’ information—as this is what is ultimately transferred out of users’
control. To further understand the importance and challenge of protecting users’
information, we study different types of personal information in the following.

2.2.1 Types of Personal Information

As identified by Ghorbel et al. [GGJ17] and Pearson [Pea09], users’ privacy generally
covers different types of personal information. We provide an overview of the differ-
ent categories and types of personal information together with illustrative examples
in Table 2.1 and discuss them in more detail in the following.

30 2. Privacy in Cloud Computing

First, personally identifiable information (PII) encompasses any information that
can be used to identify a person [Pea09]. Here, each individual key attribute can
be used to directly identify a person. Examples for key attributes include names,
cell phone numbers, social security numbers, passport numbers, or email addresses
[GGJ17,Pea09]. In contrast to key attributes, quasi-identifiers are a set of attributes
that in combination can be used to (almost) uniquely identify a person [Swe00]. For
example, combining date of birth and postal address almost uniquely identifies a
person [GGJ17], while each attribute alone often does not suffice to identify a person.
Hence, the notion of PII applies to all information that alone or in combination can
be utilized to uniquely identify a person.

Contrary, sensitive information refers to the much broader field of information that
can be linked to a certain person. In the following presentation of different types
of sensitive information, we mainly rely on the categorization of Ghorbel et al.
[GGJ17]. Yet, given the broad scope of sensitive information, this list should be
considered rather as an illustration of the concept of sensitive information than as
a definitive and comprehensive list. In this categorization, membership information
refers to a person’s affiliation with groups with respect to policy, religion, union,
and community. Likewise, demography information encompasses all demographic
characteristics of a person ranging from gender and nationality over level of education
and professional status to potential criminal records.

Information on interests and habits deals with the activities and preferences of a
person and can, e.g., be derived from web browsing activity or shopping history.
Financial information consists of all aspects of a person’s finances, such as bank
account balance and bank account statements listing financial transactions. Health
information covers data such as medical records, medical outcomes, diseases, pre-
scriptions, and medical images. Finally, information on intellectual production refers
to a person’s ideas and inventions before they are made public. Besides these ex-
amples, sensitive information essentially covers any information that should remain
private. When considering privacy at the level of enterprises, sensitive information,
most notably, includes information on the enterprise itself as well as on its employees
and customers [GGJ17].

These different types of personal information highlight that it is important but
also challenging to protect this information when outsourcing it to cloud service.
Hence, in the following, we derive an information-centric definition of privacy that
is especially well-suited in the context of cloud computing.

2.2.2 Information Privacy in Cloud Computing

In the context of this dissertation, we further sharpen the definition of Westin’s
information privacy [Wes67]—centering around users and their information as foun-
dation for informational self-determination—and evolve it to cater for the specifics
of the cloud computing paradigm (inspired by Solove’s taxonomy of privacy [Sol06]
and the approach of Ziegeldorf et al. in the context of the IoT [ZGW14]): Pri-
vacy in cloud computing guarantees individual users awareness and control over the
collection, processing, and dissemination of their personal information.

2.2. Defining Privacy in the Cloud Computing Context 31

Figure 2.4 Privacy in cloud computing provides users with awareness and control over the com-
plex and unwieldy interplay of the collection, the processing, and the dissemination (relaying)
of their personal information.

We visualize this definition and especially the underlying information flows in Fig-
ure 2.4: Users’ personal information is either intentionally or unintentionally col-
lected and sent to cloud service providers. Intentional collection of personal infor-
mation happens if a user willingly consumes a cloud service and provides access to her
data in the context of this usage, e.g., by uploading a file to a cloud storage service.
In contrast, by unintentional collection, we refer to any collection of information that
is not knowingly and willingly triggered by a user. Such an unintentional collection
of information can, e.g., happen through privacy-invasive smartphone applications
or unobtrusive IoT devices.

After information has been collected, cloud service providers process received infor-
mation either for intended or unintended functionality. Here, intended functionality
refers to anything related to the service the user actually intends to use, e.g., file
storage and synchronization, email and communication services, IoT backend in-
frastructure, but also personalization services such as Siri or Spotify. In contrast,
unintended functionality covers any processing of information that is not related to
the core functionality of the utilized service and encompasses, e.g., the processing
of information to aid targeted advertisement. Finally, information could (unnotice-
ably) be disseminated from service providers to infrastructure providers and/or some
third parties, e.g., government agencies.

As discussed in Section 1.1.2, the different actors in the cloud computing landscape
each have an own distinctive perspective on privacy in cloud computing, mainly
resulting from their differing objectives and hence motivations to cater for privacy.
Hence, in this dissertation, we address these different perspectives on privacy. Since
privacy is often related to security, we first discuss the similarities and differences of
privacy and security to clearly set these two concepts apart.

2.2.3 Privacy vs. Security

Privacy and security are two related concepts and people often falsely assume that
privacy is only about security of personal information [Hal16]. While there is a clear
symbiosis between security and privacy [Hal16] and security is a valuable building
block for achieving privacy, security alone is insufficient to protect privacy [HNLL04].
Already in 1975, Saltzer and Schroder drew a clear distinction between privacy and

32 2. Privacy in Cloud Computing

Figure 2.5 Privacy and security of information are two distinct yet related concepts. They
intersect when considering the protection of personal information, i.e., providing privacy by
means of security (presentation inspired by Brooks et al. [BGL+17] and Halter [Hal16]).

security [SS75]. While they define privacy as the ability to decide about the release
of personal information, they consider security as the technical mechanisms that
control read and write access to stored information. Given the similar but still
clearly distinct definitions of privacy and security, it is important to understand
both boundaries and overlap between privacy and security to identify how security
mechanisms and techniques can be applied to protect personal information and to
determine where such security mechanisms and techniques alone do not suffice to
provide privacy [BGL+17]. This is especially important since the security mindset
often significantly deviates from what is required to guarantee privacy [HNLL04].

In Figure 2.5, we highlight the differences and the overlap between privacy and secu-
rity [BGL+17, Hal16]. Here, privacy—as defined in Section 2.2.2—concerns aware-
ness and control over the collection, processing, and dissemination of personal infor-
mation. In contrast, security is mainly concerned with the confidentiality, integrity,
and availability of information [ISO13,KV10]: Confidentiality aims at preventing the
unauthorized disclosure of information, both intentional and unintentional. Integrity
guarantees that information is not modified in any way without proper authoriza-
tion and is consistent across systems. This guarantee, most notably, includes that
no outside entity can tamper with information that is being stored, processed, or
transferred. Finally, availability allows access to information in a timely and reliable
manner—a property that is especially important when outsourcing information to
cloud services. In this setting, the intersection between privacy and security is hence
concerned with the protection of personal information, which mainly is achieved by
providing confidentiality of said information.

Another, slightly different, way for looking at the two related concepts of privacy and
security is proposed by Flavián and Guinalíu in the context of loyalty with websites
[FG06]. In their work, they consider privacy as legal requirements and good practices
with respect to the handling of personal information. Security then encompasses the
technical guarantees that these legal requirements and good practices are indeed met.
This part of the overall field of security is what we highlight as the overlap between
privacy and security in Figure 2.5.

Notably, privacy and security are two concepts that can also work against each
other. For example, TLS client certificates enable web services to securely authenti-
cate their clients during the initial handshake. However, as these client certificates
are transferred in clear text, anyone on the communication path, e.g., internet ser-

2.3. Privacy Challenges of Cloud Computing 33

vice providers (ISPs), can use them to track users [WSC17], thus clearly harming
their privacy. Similar problems can be observed for other cryptographic identifiers,
such as public keys. Likewise, protecting privacy can also negatively impact se-
curity. As one out of many examples, anonymous communication networks, such
as Tor, which provide users with privacy when accessing resources on the Internet
[PLZ+16, PMH+17], can also be (mis)used to carry out denial of service (DoS) at-
tacks [Dri15], thus impacting security, especially with respect to availability. For
our work presented in this dissertation, it is consequentially important to consider
the impact of security measures on privacy as well as to ensure that our approaches
to increase privacy do not negatively impact equally important security goals.

Now that we have introduced privacy in the cloud computing context, derived an
information-centric definition of privacy in cloud computing, and set privacy apart
from security, we are well-prepared to study the distinct privacy challenges intro-
duced by the cloud computing paradigm in the following.

2.3 Privacy Challenges of Cloud Computing

To gain a deeper understanding of the privacy challenges of cloud computing, we
first study the privacy risks faced by the different actors in the cloud computing
landscape. Here, we rely on and adopt the privacy risk analysis of Pearson [Pea09],
thereby focusing on those individual actors in the cloud computing landscape that
are especially important with respect to privacy (cf. Section 2.1.3): For private cloud
users, privacy risks with respect to cloud computing consist of potential exposure of
personal information (cf. Section 2.2.1), e.g., either intentional or unintentional.

In contrast, corporate cloud users are mostly at risk regarding not complying with
corporate policies or legislation (and thus enormous fines) as well as loss of credi-
bility and reputation. When considering cloud service providers, risks with respect
to privacy mostly concern non-compliance with legal obligations, loss of reputation,
and unauthorized use of stored personal customer information by infrastructure
providers. Risks for cloud infrastructure providers are concerned with unintended
exposure of sensitive information stored on the infrastructure and resulting legal
liability as well as loss of user trust, credibility, and reputation. Finally, legislators
are at risk regarding being unable to enforce enacted privacy requirements as well
as losing governance and control over data. Hence, the different actors in the cloud
computing landscape each face different privacy risks and hence have a different
perspective on privacy. We argue that these different perspectives need to be incor-
porated when building technical systems to increase the level of privacy offered by
cloud computing.

These privacy risks result from four core problems for privacy in cloud computing
as we identified in Section 1.1.3 and briefly recap here. First, technical complexity
and missing transparency result from the layered architecture of cloud computing
and resulting technically complex deployment models with often indirect utilization
of resources, e.g., due to the tendency of cloud services to subcontract other cloud
services [PP15]. As a result of this technically complex realization of cloud services

34 2. Privacy in Cloud Computing

that lacks transparency for users, users have to trust an unknown number of cloud
services. Furthermore, technical complexity and missing transparency also induce
opaque legislation, where it is often unclear under which jurisdiction users’ data falls.

Most notably, if data is moved between data centers (or even cloud services), e.g., to
balance load or to recover from outages, the jurisdiction under which data falls can
change during the lifetime of this data. As a result, not only (less technically profi-
cient) users, but also providers of cloud services fail to know to which (other) cloud
services data flows to [AGM10]. Due to the inherent centrality of the cloud comput-
ing market, a small number of cloud services jointly dominate the field and hence
become a valuable target both for attackers and government agencies. Besides, users
have only very limited alternatives for selecting a potentially more privacy-friendly
cloud service. These three core problems culminate in missing control over informa-
tion when it is collected, processed, stored, and disseminated by cloud services. More
precisely, any information that leaves the control sphere of its owner could be used
for unintended purposes, handled in violation of legal requirements, or inadvertently
forwarded to any third parties [PB10,TJA10,ZGW14].

These core problems for privacy in cloud computing clearly highlight that accounting
for privacy in the cloud computing landscape is an urging and important problem.
Indeed, the various dimensions of the privacy challenges of cloud computing have
been widely studied before. We briefly summarize the most important and influ-
ential approaches in the following and distill those challenges that are of special
relevance for the approaches presented in this dissertation. First and on a general
note, Cavoukian [Cav08] investigates privacy in cloud computing and states that it
is impossible to fully realize the benefits of cloud computing without better protec-
tion of privacy. From a more technical perspective, Theoharidou et al. [TPPG13]
examine the privacy risks resulting from migrating data, applications, or services to
cloud services. Likewise, NIST [JG11] states that understanding procedures, poli-
cies, and technical measures employed by cloud services is key to assess resulting
privacy risks.

Pearson and Benameur [PB10] identify privacy issues arising from cloud comput-
ing and propose measures ranging from data handling mechanisms over design for
privacy to standardization to overcome these issues. Takabi et al. [TJA10] study
privacy challenges resulting from cloud computing and identify data-centric privacy,
trust management, and access control as promising approaches to address these chal-
lenges. Ghorbel et al. [GGJ17] survey privacy challenges as well as risks of public
cloud computing and conclude that user control, policy enforcement, and the lack
of user awareness are key open issues that need to be tackled. Pearson [Pea09]
provides guidelines on how to design cloud services in a privacy-preserving manner,
while Claycomb and Nicoll [CN12] argue that it is especially important to also focus
on privacy challenges resulting from insider threats.

From a different perspective, Pearson [Pea13] argues that cloud business scenarios
have to take into account that the collection, processing, storage, and dissemination
of personal information is (heavily) regulated in many countries. Mather et al.
[MKL09] study privacy challenges of cloud computing from an enterprise perspective,
thereby specifically focusing on risk and compliance concerns. Focusing on the users

2.3. Privacy Challenges of Cloud Computing 35

whose privacy is (potentially) impacted, Ion et al. [ISKČ11] derive privacy challenges
of cloud storage by surveying users on their privacy concerns. De Filippi et al. [FM12]
study the impact of cloud computing on society, especially with respect to privacy
challenges resulting from its centralized deployment model and transborder data
flows. In contrast, Gellmann [Gel09] and Millard [Mil13] focus on legal challenges
resulting from the impact of cloud computing, especially with respect to the privacy
of personal information.

Microsoft’s policy considerations and recommendations [Mic16a] focus on clear and
enforceable privacy frameworks established by governments to achieve important
properties such as transparency, control, and consent. Similarly, Jaeger et al. [JLG08]
study privacy challenges of cloud computing as part of a survey of the policy issues
raised by cloud computing.

In the following, we detail those aspects of privacy in cloud computing that are
of special importance within the context of this dissertation. To this end, we first
study data handling requirements and legal obligations that have to be considered
when collecting, processing, storing, and disseminating personal information in cloud
services. Then, we derive potential attacks originating from different actors in the
cloud computing landscape and outside entities. Finally, we present key principles
and guidelines for realizing privacy-preserving cloud services.

2.3.1 Data Handling Requirements and Legal Obligations

With the increasing demand for sharing data and storing it with external par-
ties [SV10], obeying with data handling requirements (DHRs) imposed by clients
and lawmakers as well as accounting for other legal obligations becomes a crucial
challenge for cloud services [WMF13]. DHRs involve constraints on the storage,
processing, distribution, and deletion of data in cloud services. These constraints
follow from legal [HIPA96, EU95], contractual [PCI15], or intrinsic requirements
[BYV+09,RTSS09]. They range from restrictions on storage locations or durations
[Gel09, JG11, PB10] to certain properties of the storage medium such as full disk
encryption [GLBA99, SSFS12]. Especially for businesses, compliance with legal
and contractual obligations is important to avoid serious (financial) consequences
[MNP+11]. In the following, we discuss DHRs from the perspectives of cloud users
and providers based on common classes [HMH+18].

Location Requirements

Privacy concerns regarding the storage and processing of personal information can
depend on the location where this storage and processing takes places. First, lo-
cation requirements can be imposed by legislation to address concerns raised when
personal information is stored and processed outside of specified legislative bound-
aries [PB10]. Cory [Cor17] provides an extensive overview that contains most of
the formal location requirements imposed by laws and regulations worldwide. The
EU data protection directive 95/46/EC [EU95], e.g., forbids the storage of personal

36 2. Privacy in Cloud Computing

information in jurisdictions with an insufficient (as specified by the directive) level
of data protection. Similar data protection legislation and regulation that restricts
the storage and processing of personal information in other jurisdictions have, e.g.,
been enacted in Argentina, Indonesia, and Malaysia [Cor17].

Also other legislation, besides data protection laws, can impose restrictions on the
storage and processing location of personal information. German tax legislation, e.g.,
forbids the storage of tax data outside of the country (with certain exceptions for
multinational companies) [Cor17]. Similarly, US regulations prohibit the disclosure
of certain taxpayers’ personal information, e.g., the social security number, to entities
located outside the US [Gel09]. In France, all data created by public administration
has to be stored within the country [Cor17].

Besides legislation, especially corporate users may impose location requirements
themselves. To increase robustness against outages, a company might demand to
store replicas of their data on different continents [BYV+09]. Furthermore, an en-
terprise could require that sensitive data is not colocated with data of competitors
for fear of accidental leaks or deliberate breaches [RTSS09]. Similarly, customers
from outside the US could prefer to not store their data in the US because of fears
that government agencies might access their data under the Patriot Act [RFVE11].

Duration Requirements

Additionally, with respect to the storage duration of data, legislation and regulation
impose various restrictions that have to be considered when outsourcing storage and
processing of personal information to cloud services. For example, the Sarbanes-
Oxley Act (SOX) [SOX02] requires accounting firms in the US to retain records
relevant to audits and reviews for seven years, thus imposing a minimum storage
duration. In contrast, the Payment Card Industry Data Security Standard (PCI
DSS) [PCI15] limits the storage duration of cardholder data in the US to the time
necessary for business, legal, or regulatory purposes after which it has to be deleted,
hence dictating a maximum storage duration. A similar approach, coined “the right
to be forgotten” or “right to erasure”, is actively being discussed and turned into leg-
islation in the EU and Argentina [Man13,Ros12,GDPR16]. From a user perspective,
being able to properly limit the storage duration is important, since 63 % of users of
online services surveyed by the Pew Research Center in 2008 were very concerned
that cloud services keep a copy of files even if users try to delete them [Hor08].

Further and Future Requirements

Finally, also further requirements impose restrictions on how data should be stored
and processed by cloud services. As an example, HIPAA [HIPA96] requires health
data to be securely deleted before a storage medium is disposed or reused. Likewise,
for the banking and financial services industry in the US, the Gramm-Leach-Bliley
Act (GLBA) [GLBA99] imposes the proper encryption of stored customer data.
Additionally, to protect against theft or seizure, clients may choose to store their
data only on volatile [JMR+14] or fully encrypted [SSFS12] storage devices.

2.3. Privacy Challenges of Cloud Computing 37

Figure 2.6 Attacks that threaten privacy in cloud computing originate from a variety of internal
(dark gray) as well as external (black) entities.

Besides these already existing requirements, it is important to note that DHRs are
likely to change and evolve just as legislation and cloud storage technologies are
changing and evolving over time. For example, location requirements developed
since cloud systems began to span multiple regions with different legislation. When
tackling the challenges resulting from DHRs in cloud services, it is thus important
to keep in mind that yet unforeseen requirements and legislative developments can
and likely will emerge.

2.3.2 Attack Models

So far, we mainly discussed different privacy risks and challenges. Yet, for some
of these risks, e.g., the exposure of personal information to third parties, it is also
important to identify where exactly these risks and challenges originate from, i.e.,
from which entities. To identify these entities, we rely on attack models which
are a standard tool to formulate security assumptions and considerations in the
security and privacy research community. In the following, we summarize different
attack models with respect to privacy in cloud computing as a foundation to better
understand how we can protect against resulting threats and risks.

We provide an overview covering the different attackers and entities that pose threats
and risks to privacy in Figure 2.6. When studying privacy risks in the cloud comput-
ing landscape, it is especially important to differentiate between inside and outside
attacks [Beh11]: Inside attacks originate from all entities involved in the collection,
processing, storage, and dissemination of personal information in the cloud comput-
ing context. In contrast, outside attacks evolve from all entities that are not involved
in delivering cloud services per se, but potentially have interest in gaining access to
personal information stored and processed in the cloud.

Attacks from Outside Entities

As shown in Figure 2.6, outside attacks mainly originate from hackers and attackers
[Beh11]. First, on-path network attacks try to interfere with the network connec-
tivity between a user and her cloud services, e.g., to gain access to the content of

38 2. Privacy in Cloud Computing

the communication taking place. Since these attacks require access to the network
infrastructure, typical entities from which such attacks originate include ISPs and
government agencies. A second class of attacks directly targets cloud resources such
as virtual machines by exploiting security vulnerabilities or cracking passwords. Such
attacks can be executed by anyone since they merely require access to the Internet.

While these two threats are not specific to cloud services, a third, cloud-specific,
threat originates from potentially insecure interfaces and APIs exposed by cloud
services [CSA10]. Security vulnerabilities in these interfaces and APIs as well as
weak authentication tokens can again be exploited by anyone since the interfaces
and APIs exposed by cloud services are typically accessible from the Internet. While
all these threats pose risks for personal information, they can be circumvented using
standard security measures and are less relevant when focusing specifically on the
privacy challenges of cloud computing [CSA10,Beh11]. From a different perspective,
privacy measures can also protect against attacks originating from outside entities.
For example, if the information on which cloud service or data center a (corporate)
user utilizes is kept private, outside attackers cannot (easily) launch DoS attacks.

Attacks from Inside Entities

In contrast, attacks originating from inside entities are especially important with
respect to privacy. As we highlight in Figure 2.6, these entities range from the cloud
providers at the infrastructure and service level over their employees to malicious em-
ployees of a corporate cloud user [CSA10,CN12]. All these entities have in common
that they can exploit their privileges to negatively affect confidentiality, integrity, or
availability of personal information collected, processed, stored, and disseminated
by cloud services [CMT12]. While the privacy threats and risks originating from
malicious employees of a corporate cloud user are not specific to cloud computing,
the threats and risks originating from cloud providers both at the infrastructure and
service level as well as their employees clearly are.

To account for these threats and risks, we can rely on attack models that define
security and privacy assumptions regarding these entities and hence conceptually
define against which type of attacks we need to protect. Traditionally designed for
the security landscape, attacker models are an extremely valuable tool to model
different threats and risks resulting from cloud infrastructure and service providers.
To this end, Ryan [Rya14] identifies four attacker models for the cloud computing
landscape which we briefly present and relate to privacy in the following. The
rather weak assumption of an honest cloud provider assumes that neither the cloud
provider nor its employees launch any attack against personal information under
their control. On the other end of the two extremes, the model of a malicious cloud
provider assumes a fully malignant cloud provider (or its employees) that can launch
any attacks and hence can even completely deny the service [Gol04]. This model is
likewise unrealistic as business models, contracts, and thus legal liability are opposed
to a fully malicious behavior [Rya14].

Therefore, we turn our focus to the two realistic and widely used attacker models
in the cloud computing field that lie between these two extremes. First, the notion

2.3. Privacy Challenges of Cloud Computing 39

of an honest-but-curious or semi-honest cloud provider refers to a cloud provider
that conscientiously delivers its service as agreed upon but might keep record of all
information it can get access to while doing so [Gol04, Rya14]. In other words, an
honest-but-curious cloud provider will launch only passive attacks [Rya14].

However, it is not always realistic to assume that a cloud provider (or its employees)
will not launch any active attacks. To this end, Ryan introduces the notion of a
malicious-but-cautious cloud provider that is able to launch active attacks as long as
these attacks do not leave any readily verifiable evidence [Rya14]. This assumption
is similar to those of a covert adversary [AL07]. However, the model of a malicious-
but-cautious cloud provider additionally—and in contrast to a covert adversary—
assumes that the cloud provider will protect its users from outside attacks [Rya14].

Which of the two attacker models is appropriate for a given scenario highly depends
on the assets at stake, and thus, we rely on both within the scope of this dissertation,
always selecting the one that is more appropriate in the respective context.

Attack models define security assumptions and considerations, especially with re-
spect to the entities from which security and privacy risks originate. In the following,
we discuss how privacy threats and risks in cloud computing can be mitigated by
designing cloud services in a privacy-preserving manner.

2.3.3 Key Principles for Privacy-preserving Cloud Services

Rounding up our discussion of privacy challenges in the cloud computing landscape,
we now take our look forward and discuss how to deal with these privacy challenges
when designing (new) cloud services. To this end, we present different key principles
and actionable practices to design and implement privacy-preserving cloud services.

Based on the well-accepted concept of Fair Information Principles [CSA96,PIPE00,
TPPG13], Pearson derives nine key principles for designing privacy-preserving cloud
services [Pea09], which we briefly summarize in the following. First, notice, open-
ness, and transparency mandate that anyone who collects personal information must
inform users about the purpose and extent of information usage, especially if col-
lected personal information is shared with third parties. Most notably, this principle
includes that users have to be provided with understandable privacy policies.

Through choice, consent, and control, users are empowered to decide whether their
personal information should be collected or not. By requiring users’ consent for any
collection of personal information, they are put back into control over their privacy.
Scope and minimization of information collection require that personal information
should only be collected if it is required for the intended purpose, which leads to the
requirement of minimizing information collection. Access and accuracy imply that
users should have access to all their personal information stored in the cloud to verify
its accuracy. This implies that all stored personal information has to be accurate
at all times. Security safeguards provide users with technical guarantees that their
personal information is protected against unauthorized access, usage, modification,
disclosure, and forwarding.

40 2. Privacy in Cloud Computing

The option to challenge compliance empowers users to contest a cloud provider’s pri-
vacy process. To this end, it is important that cloud providers comply with privacy
and data protection legislation, especially with respect to the potential transborder
flow of information. Purposeful use mandates that any personal information that
has been collected is only used for the stated intended purpose. Likewise, limit-
ing use, disclosure, and retention implies that the storage of personal information
should be limited to the period of time necessary for fulfilling the intended pur-
pose. Furthermore, data should only be shared with those third parties that the
user explicitly authorized to receive her data. Finally, accountability ensures that
cloud providers adhere to privacy policies and practices, which includes the neces-
sary technical means to monitor and log read and write access to stored personal
information as a foundation for auditing capabilities.
Based on these key principles, we derive seven actionable privacy practices for de-
veloping cloud services inspired by Pearson’s six recommendations for software en-
gineers [Pea09] and the seven principles underlying “Privacy by Design” [Cav11].
First, cloud services should be designed proactive not reactive, i.e., (potential) pri-
vacy incidents should be identified and prevented before they occur instead of having
to react to evolving privacy incidents. To provide users with the best possible level
of privacy, privacy by default ensures that the default setting for a cloud service al-
ways is the most privacy-friendly one, i.e., users’ privacy is automatically protected
without requiring their interaction with the cloud service. Furthermore, protection
of personal information, e.g., using end-to-end security and access control based
on encryption as well as integrity protection based on checksums and digital signa-
tures, ensures that personal information is not inadvertently accessed by, disclosed
to, forwarded to, or modified by unauthorized third parties.
As a foundation for establishing trust, user-centric control guarantees users that they
stay in control over their personal information. Such control can, e.g., be achieved
using a cryptographically enforced access control system where users steer access
to encrypted personal information by releasing decryption keys (cf. Section 5.2).
Visibility and transparency ensure that the storage and processing of personal infor-
mation are indeed carried out as stated and promised. By making the usage and
transfer of personal information visible and transparent, users can verify that their
personal information is actually used as intended, hence lay an essential foundation
for trust into a cloud service. Minimized collection of personal information limits the
collection, processing, storage, and dissemination of personal information to what
is absolutely necessary to fulfill the intended purpose and thus minimizes privacy
risks. On a similar note, specified and limited purpose of usage of personal informa-
tion ensures that collected personal information is not (mis)used for purposes that
are unintended by the user.
We have now laid out the necessary background information on cloud computing
and its privacy challenges as a foundation for this dissertation. However, the level
of privacy that cloud computing has to achieve highly depends on the individual
application domain. In the scope of this dissertation, we utilize the Internet of
Things and Cyber-physical Systems as exemplary application domains with notably
strong privacy requirements, especially in Chapters 4 and 5, to further motivate
our approaches and privacy assumptions. To this end, we additionally introduce

2.4. The Cloud-based Internet of Things 41

Figure 2.7 In the cloud-based IoT, each user operates one or more IoT networks. The IoT
devices in these networks send data to the cloud via a gateway. The cloud stores data and
provides it to services which are authorized by the user to access data.

the notion of the cloud-based Internet of Things and resulting ancillary privacy
challenges, before we start presenting the contributions of this dissertation in detail.

2.4 The Cloud-based Internet of Things

Within the scope of this dissertation and especially in Chapters 4 and 5, we use the
Internet of Things (IoT) and Cyber-physical Systems (CPS) as application domains
for cloud services with extremely strict privacy requirements. In the following, we
provide a brief introduction into the general motivation for the cloud-based IoT and
CPS, typical network scenarios, as well as resulting privacy concerns and consider-
ations that motivate the need for ancillary privacy measures.

The proliferation of the IoT and CPS, which enable the worldwide interconnection of
an inconceivably large amount of smart things, allows to effectively realize systems
that significantly improve everyday’s life, ranging from pervasive healthcare and as-
sisted living to smart cities [AIM10, GBMP13, ZGW14]. However, as these smart
devices are often powered by battery, they often suffer from extremely constrained
processing and storage resources, and a limited energy budget. To overcome these
limitations, one of the most promising approaches is to interconnect the IoT with the
cloud and thus benefit from the elastically scalable and always available resources
provided by cloud computing [LVCD13,EHH+14,BDPP16,HHH+17]. Hence, utiliz-
ing the cloud-based IoT simplifies storage and processing of collected data, allows
using the same data in multiple services, eases the combination of data from several
users, and supports user mobility, while at the same time preventing fragmentation
of information over several isolated silos.

In the following, we discuss the underlying network scenario of cloud-based IoT
deployments as well as resulting privacy concerns and considerations [HHK+16].

2.4.1 Network Scenario

The underlying network scenario of the cloud-based IoT from a user-centric view is
shown in Figure 2.7. Each user owns and thus operates one or more IoT devices,

42 2. Privacy in Cloud Computing

also known as smart objects. We consider IoT devices that sense information from
the environment, interact with the physical world, and—most importantly—allow
communication using traditional Internet standards [GBMP13]. Prominent exam-
ples for IoT devices, e.g., in the context of assisted living, range from sensitive floors
for movement monitoring and fall detection over smart textiles (e.g., shirts, wrist-
bands, or shoes) monitoring various vital parameters and connected to emergency
notification systems to advanced devices capable of monitoring specialized implants,
such as artificial cardiac pacemakers [ZGW14,HHK+16].

Such IoT devices are typically realized using dedicated embedded platforms to reduce
production costs and hence simplify deployment. As a result, IoT devices often have
to cope with limited storage and processing resources. Especially in mobile settings,
they furthermore suffer from limited connectivity and, as they are often powered by
battery, a tightly limited energy budget [PDG+16].

The cloud-based IoT sets out to address these limitations by interconnecting the IoT
with the cloud [LVCD13,EHH+14,BDPP16,HHH+17]. The core idea of the cloud-
based IoT is to upload all sensed data to the cloud, where it is stored persistently.
Users can then authorize specific cloud services to access and operate on their data
and thus realize the desired functionality. Since the design of the cloud-based IoT
aims to maximize availability (both of data and services), all functionality that
operates on IoT data is realized directly in the cloud.

However, if the connection between an IoT device and the cloud is temporarily
disrupted, data cannot be pushed to the cloud (immediately) and has to be cached
locally and uploaded once the connection has been reestablished. Still, the cloud-
based IoT allows accessing all data that is already stored in the cloud and operate
services on it even during a disrupted connection between IoT device and cloud.
As a result, availability of IoT data is significantly increased compared to solutions
that propose to store and process IoT data locally (and hence become completely
unavailable in case of connectivity issues).

As shown in Figure 2.7, IoT devices of one user are often grouped into one or multiple
logically or even physically separated IoT networks, e.g., a home network consisting
of assisted living devices and a body area network containing unobtrusive healthcare
devices. Each of these networks is connected to the Internet (and thus the cloud)
using a dedicated gateway. In the context of assisted living, this gateway typically
consists of a home router while for public mobility assistance the user’s smartphone
acts as gateway.

The federated network of all IoT devices and networks of one user constitutes her
privacy sphere, in which she trusts all devices and other network participants but
does not want any personal information that is collected within this context to
be available to unauthorized third parties. To guarantee this, she has to employ
standard network security measures such as wireless channel encryption. IoT data
sensed by the devices of a user is forwarded to the cloud via the dedicated gateway.
The cloud stores all IoT data and makes it available to those cloud services that the
user explicitly grants permission to access her data.

2.5. Summary 43

2.4.2 Privacy Concerns and Considerations

When realizing and implementing a scenario as described above, in which personal
information collected by IoT devices is outsourced to the cloud, different privacy
aspects have to be considered. We present and discuss these aspects in more detail
in the following.

Data collected by IoT devices often consists of personal information that unautho-
rized third parties might be interested in [ZGW14]. As an example, data collected
by a car-based telematics system can be extremely valuable for insurance compa-
nies, as this knowledge could be exploited to increase fees or even deny new con-
tracts [Cou13]. Notably, not only sensed IoT data itself but also corresponding meta
information has to be treated as sensitive [CRKH11], especially in the context of
location privacy [ZVHW14] with meta information such as location fixes and time
stamps collected by GPS, wireless networks, or NFC tags. Hence, users typically are
reluctant to share data collected by their IoT devices with third parties [ZGW14].

These privacy concerns and issues further amplify when outsourcing this personal
information to the cloud. Again, the major concern of users in this setting is the
perceived loss of control over data when it is outsourced to the cloud [TJA10].
Furthermore, users are concerned about reasonable protection of their data, that
legislation is adhered to, and scope and purpose of data usage [Smi12]. Due to these
concerns, users ultimately tend to refrain from using cloud-based services for (highly)
sensitive data, e.g., health-related information as it is stored and processed by cloud-
based personal health records systems [LHL15]. To avoid this adoption barrier for
users of cloud services in the context of the cloud-based IoT, cloud providers have to
explicitly guarantee confidentiality and protection of stored and processed IoT data,
because otherwise an adoption barrier can arise for users due to their individual
privacy concerns.

Concluding our discussion of the cloud-based IoT, its network scenario, and resulting
privacy concerns and considerations, we sum up that the cloud-based IoT is an
application domain with strict privacy requirements. Hence, it is a prime candidate
for showcasing solutions to account for privacy, especially in the context of our
approaches presented in Chapters 4 and 5.

2.5 Summary

To summarize this chapter, we have identified that the cloud computing landscape
is quite diverse and versatile. There are different ways of interplay and diverse
relationships between the various actors in the cloud computing landscape and their
interactions often take place indirectly and undetectable for the actual users whose
privacy is consequently at risk. Based on the distinct characteristics of the cloud
computing paradigm, we introduced the notion of privacy in the context of cloud
computing. Most notably, we presented an information-centric definition of privacy
in cloud computing and set privacy apart from security.

44 2. Privacy in Cloud Computing

Our deeper look at the privacy challenges inherent to cloud computing revealed the
importance of adhering to data handling requirements and legal obligations. Fur-
thermore, the presented attack models enable us to properly define the inside and
outside threats and risks to privacy that need to be addressed. The key principles
and actionable practices for privacy-preserving cloud services provide the necessary
guidance for designing and implementing our privacy approaches. Finally, we intro-
duced the concept of the cloud-based IoT as an exemplary application domain for
cloud services with strong privacy requirements. To provide the foundation for this
example, we derived a typical network scenario for cloud-based IoT deployments
and briefly discussed resulting privacy concerns and considerations.

As we have now laid out the necessary background information on cloud computing,
privacy in general, and privacy challenges in the cloud computing landscape as well
as the cloud-based IoT, we are now well-prepared and equipped with the necessary
background knowledge for the main part of this dissertation. In the following, we
apply this background knowledge when presenting the four distinct contributions
of this dissertation that jointly address the three research questions underlying our
approach to account for privacy in the cloud computing landscape (cf. Chapter 1).

3
Raising Awareness for Cloud Usage

In this chapter, we present approaches to provide users with transparency over their
individual exposure to cloud services and hence raise their awareness for cloud usage
and potentially resulting potential privacy risks. To this end, we first summarize
the motivation for raising awareness for cloud usage as a foundation for users to
make informed decisions and exercise their right to privacy as well as identify two
prominent deployment domains for cloud services to showcase our work (Section 3.1).

As our first approach, we present MailAnalyzer [San16b, HSH17] to uncover the
cloud exposure of email users based on information in received emails (Section 3.2).
Our second approach, CloudAnalyzer [Müh14,Hel15,Dri16,HKH+16,HPH+17], like-
wise uncovers the cloud usage of mobile apps on smartphones by passively observing
network traffic (Section 3.3). We round up our work on raising awareness for cloud
usage by providing a feasibility study of an approach for privacy-preserving compar-
ison of cloud usage [Ina17, HIFZ17] that enables users to contextualize their cloud
usage through comparison with their peers (Section 3.4). Finally, we conclude this
chapter with a brief summary and discussion (Section 3.5).

3.1 Motivation

A fundamental challenge with respect to privacy in cloud computing is its techni-
cal complexity and missing transparency, especially for less technically proficient
users. This challenge becomes especially important since more and more everyday
technology ranging from email over mobile apps on smartphones to the IoT relies
on cloud resources, leading to a situation in which users’ personal information is
unconsciously exposed to cloud services [EHKR14], i.e., users are often unaware of
(the extent of) the exposure of their personal information to cloud services. How-
ever, without even knowing that they are using cloud services, users cannot make
informed decisions and exercise their right to privacy.

46 3. Raising Awareness for Cloud Usage

As a foundation to put users back into control over their privacy, we hence consider it
necessary to uncover their cloud usage and raise their awareness of resulting privacy
risks. To this end, we select two prominent deployment domains for cloud services
with which even less technically proficient users (unconsciously) interact with on a
daily basis: email and mobile apps on smartphones. With an estimated amount of
2.6 billion daily users sending 215.3 billion emails per day in 2016 [Rad16], email
clearly constitutes a significant communication medium. Likewise, we observe a
tremendous increase in the worldwide adoption of smartphones with more than 340
million units sold in the first quarter of 2017 [IDC17, PHW17]. These numbers
highlight the importance and relevance of these two deployment domains for cloud
services, which are used by a wide range of often less technically proficient users.

As we show in this chapter, both deployment domains significantly rely on a pot-
pourri of cloud services nowadays. Our analysis of the cloud exposure of email users
uncovers that as of 2016, 13 % to 25 % of received emails utilized cloud services
and that between 30 % and 70 % of this cloud usage cannot be (easily) detected by
non-expert users. Similarly, our study of the cloud usage of mobile apps for the
Android platform reveals an excessive exposure to cloud services as 90 % of apps use
cloud services (with an average usage of 3.2 cloud services per app) and 36 % of apps
used by volunteers in our study exclusively communicate with cloud services. These
exemplary numbers show that everyday technology, such as email and mobile apps
on smartphones, significantly relies on cloud services, both in term of the fraction
of cloud usage and the number of utilized cloud services.

However, it is extremely difficult for users to correlate their quantified cloud usage
behavior to resulting potential privacy risks. To this end, the concept of comparison-
based privacy [ZHHW15] allows users to compare themselves with their peers, i.e.,
like-minded individuals of similar social status—in our case with respect to the usage
of cloud services in their immediate social contexts. While applying comparison-
based privacy to nudge users on cloud usage is extremely promising, it also in itself
introduces privacy concerns since cloud usage statistics constitute sensitive informa-
tion. Hence, applying comparison-based privacy to compare the cloud exposure of
users requires the design and implementation of a privacy-preserving system that
protects contributed personal information.

3.1.1 Contributions

To provide users with transparency over their individual exposure to cloud services
and thus, raise their awareness of the potential privacy risks resulting from this cloud
usage, we present the following contributions in this chapter.

1) We present MailAnalyzer which uncovers the cloud usage of email by dissecting
header information of received emails to detect cloud services on the path from
the sender to the receiver. To this end, MailAnalyzer uses information publicly
provided by a representative set of 31 cloud and email providers as well as patterns
derived from the Internet infrastructure, such as DNS or BGP routing data.
MailAnalyzer is especially valuable for the large fraction of hidden cloud usage

3.2. MailAnalyzer: Uncovering the Cloud Exposure of Email Users 47

that cannot easily be observed by users. We employ MailAnalyzer to understand
the cloud email infrastructure (contacted when sending email) by identifying
email servers running on cloud infrastructure in the entire IPv4 address space and
uncover cloud usage for all 154 million .com/.net/.org domains. Furthermore, we
utilize MailAnalyzer to analyze the cloud usage of 31 million exchanged emails,
ranging from public mailing list archives to the personal emails of 20 volunteer
users (Section 3.2).

2) We present CloudAnalyzer which reveals the cloud usage of mobile apps on off-
the-shelf smartphones by locally monitoring the network traffic produced by apps.
To this end, CloudAnalyzer relies on a set of 55 representative cloud services that
we derive from a thorough analysis of the landscape of cloud services utilized by
mobile apps. Besides the cloud service(s) an app is directly using, CloudAnalyzer
identifies the indirect use of cloud resources resulting from services realized on
top of cloud infrastructure. We apply CloudAnalyzer to study the cloud exposure
of 29 volunteer users over a period of 19 days, to analyze the cloud usage of the
5000 most popular mobile websites, and to compare the cloud usage of the 500
most popular apps when launched from five different countries (Section 3.3).

3) We realize the concept of comparison-based privacy [ZHHW15] in a privacy-
preserving manner to enable users to compare their personal cloud exposure
to that of their peers. To this end, we introduce a privacy proxy that hides
users’ identities and employs k-anonymity and differential privacy on encrypted
cloud usage statistics to aggregate and to further protect user contributions from
disclosure. We preliminarily study the feasibility and applicability of our ap-
proach by utilizing it to protect cloud usage statistics of the apps running on the
smartphones of 29 volunteers over the course of 19 days (Section 3.4).

3.2 MailAnalyzer: Uncovering the Cloud Exposure of
Email Users

Email is one of the oldest and most prominent Internet services and remains an
important communication medium. Its significance is expressed by current usage
statistics, e.g., Radicati [Rad16] estimates more than 2.6 billion email users sending
215.3 billion emails per day in 2016. To cope with the steady increase in usage, email
is currently experiencing an architectural change from a largely decentralized medium
towards a more centralized one [MLB+11]. The reason for this shift is the ongoing
trend to outsource email services to cloud operators, either by hosting email servers
inside the cloud or by adopting cloud email providers. Compared to the classical
decentralized email infrastructure in which each organization operates its own email
service, cloud email affords to run email services in a more flexible, scalable, and
cost-efficient manner [BL07]. Email running in the cloud ranges from email servers
running on cloud infrastructure, e.g., Amazon EC2 or Microsoft Azure, over cloud-
based email security services, such as SPAM and DoS protection, to cloud-hosted
email services for end users, e.g., Gmail and Outlook.com.
While cloud computing affords the flexible handling of increasing demands of email,
it also raises privacy concerns. These concerns are rooted in the fact that emails

48 3. Raising Awareness for Cloud Usage

are inadvertently forwarded to third parties. This forwarding—and the disclosure
of data to third parties—is often unknown to the sender (e.g., email addressed to
a state-owned university can be handled by a public cloud provider). Due to this
forwarding, exposed data can be used for unintended purposes (e.g., personalized
advertising [Goo18c]), or can be handled and stored violating legal requirements.
Furthermore, concentrating emails at a few large providers renders those valuable
attack targets, as exemplified by the breach of all 3 billion Yahoo accounts [Per17].
From a different perspective, processing email by large cloud providers can raise
jurisdiction and privacy concerns [ISKČ11, FKH15], especially when their usage is
not visible to users, i.e., cannot be inferred from the sender or receiver address
(cf. Section 2.3). Due to the centralized nature of cloud infrastructures, email stored
in the cloud is further susceptible to governmental access, e.g., for safety, security,
economic, or scientific purposes [Cun16]. Users have become aware of the resulting
threats to their privacy by recent global surveillance disclosures [Gel13].

However, users have only very limited knowledge of their exposure to cloud email
services, i.e., how much of their email is processed by cloud services. The goal of
our work is thus to provide a comprehensive assessment of the prevalence of cloud
email. We start by understanding the cloud email infrastructure, i.e., the set of email
servers hosted in cloud environments. We, therefore, identify all publicly reachable
SMTP servers in the entire IPv4 address space and further analyze email servers
configured for all 154 million .com/.net/.org domains. While this first part provides
us with an empirical understanding of email infrastructure hosted in the cloud, it
does not provide insights on if and how this infrastructure is actually used. To
analyze the user exposure to the cloud, we analyze actual email exchanges in the
second and main part of our study. We thus analyze both (i) emails from public
email archives providing longitudinal data and (ii) emails from personal mailboxes
of volunteers in a user study, totaling to more than 31 million exchanged emails.
To ease reproducibility of our results and to pave the way for further research, we
make our source code, detection patterns for cloud services, as well as anonymized
aggregated study results available under the MIT license2.

3.2.1 Cloud-based Email and Privacy

We observe a steady trend of moving email services to the cloud to cope with the
ever-increasing amount of emails being sent. Likewise, large corporations have also
shifted their on-premise email infrastructure to the cloud. To further understand
this trend, we first provide an overview of the different types of cloud email services
and distill a representative set of services. Based on this analysis, we derive resulting
privacy risks of cloud-based email deployments and discuss related work.

3.2.1.1 The Cloud-based Email Landscape

Prior to the emergence of cloud-based email services, outsourced email services were
generally differentiated into email providers (i.e., services providing email services

2https://github.com/COMSYS/MailAnalyzer

3.2. MailAnalyzer: Uncovering the Cloud Exposure of Email Users 49

Figure 3.1 In the cloud-based email landscape, existing email infrastructure is either migrated
to the cloud (light gray) or new types of infrastructure emerge (dark gray).

under their own domain) and email hosters (i.e., services that provide email services
under the domain of the customer). As shown in Figure 3.1, when moving email
services to the cloud, the landscape of email services becomes more diverse. In the
following, we discuss the landscape of different types of cloud-based email services,
consisting of traditional outsourced email services that have moved to the cloud
and new services, that could only emerge because of the cloud. Furthermore, we
compile a representative list of the most influential cloud services for each class. We
provide the full list of the 31 cloud services that we selected in Table 3.1 and, in the
following, focus on justifying the reasoning behind our selection of these services.

Email Providers. Email providers offer typical email services, i.e., a mailbox with
the possibility to send and receive emails. Notably, email addresses served by email
providers are bound to the domain of the individual provider (e.g., @aol.com). Email
providers often offer services for free and finance their services through advertise-
ments [Rob09]. Hence, the majority of their customers are private users. We base our
selection of cloud-based email providers on a survey conducted by Adestra [Ade16].
In our analysis, we include the six most popular email providers as used by the 1200
study participants (US residents, all age ranges) as their primary email provider.
These six providers account for 96 % of the participant’s primary email providers.

Email Hosters. Email hosters offer basic email services under the domain of the
customer, where each customer will use their own domain (e.g., @example.com).
Typically, email hosters charge for their services, e.g., based on the size and amount
of mailboxes. While private users also use hosters, the majority of customers are
corporations and businesses. In contrast to email providers, it is not possible to
derive the hoster directly from a hosted email address. We are especially interested
in services hosting emails for a large number of domains. Hence, we rely on mea-
surements performed by DomainTools on the most popular email servers according
to the number of domains they serve [Dom16]. Based on these results, we include
the top five hosters of popular email servers in our analysis.

Email on Cloud Infrastructure. Cloud computing enables the transformation of ar-
bitrary services from own on-premise-hardware to virtualized infrastructure running
in a cloud data center. Hence, cloud computing affords the transfer of previously
self-hosted email servers to a cloud infrastructure. The main motivation for this

50 3. Raising Awareness for Cloud Usage

Service Provider Hoster Infrast. Security Market. Source(s)

1&1 � � � � [Dom16]
Adobe � [McA16]
Amazon � � � [LPGD16]
AOL � [Ade16]
AppRiver � � [Clo16]
CenturyLink � � � � [LPGD16]
Cisco � � � [Clo16]
Comcast � � [Ade16]
Epsilon � [McA16]
Experian � [McA16]
Fujitsu � � � [LPGD16]
GoDaddy � � � [Dom16]
Google � � � [LPGD16] [Ade16] [Dom16]
IBM (SoftLayer) � � [LPGD16]
iCloud � [Ade16]
MAX MailProtection � [Clo16]
McAfee � [Clo16]
Microsoft � � � � � [LPGD16] [Ade16]
Mimecast � � [Clo16]
NTT Communications � � [LPGD16]
Oracle � � [McA16]
OVH � � [Dom16]
Proofpoint � [Clo16]
Rackspace � � [LPGD16]
Salesforce � [McA16]
Strato � � [Dom16]
Symantec � [Clo16]
TrendMicro � [Clo16]
Virtustream � [LPGD16]
VMware � [LPGD16]
Yahoo � � [Ade16]

Table 3.1 Our representative set of 31 services covers the different classes of cloud email
services. We use � to denote services that we consider representative for each class of cloud
email services, while � denotes less prominent services for a class.

transition are cost reductions, lower maintenance efforts, and elastic scalability. As
moving an email server to a cloud infrastructure still requires the setup and admin-
istration of an email server, this approach is mainly pursued by businesses. For our
selection of cloud infrastructure (IaaS) providers, we build upon a market analysis
performed by Gartner [LPGD16]. Based on this analysis, we select the ten cloud
infrastructure services with the highest market share, as those jointly dominate the
market according to Gartner [LPGD16].

Email Security. Mail servers are subject to a number of security threats, ranging
from SPAM and malware to DoS attacks, against which cloud-based email security
services promise better protection. To this end, they use the resources of the cloud
to operate security proxies for incoming and outgoing email traffic, effectively hiding
the identity of the actual email server. For our selection of cloud-based email security
services, we rely on the analysis tools of CloudEmailSecurity.org [Clo16]. We include
all eight services that are featured in their survey into our analysis, as we could not
find reliable information on their market shares to further narrow down our selection.

Email Marketing. Cloud-based email marketing services enable the sending of large
amounts of personalized emails for marketing purposes, e.g., to advertise products,
engage with customers, or solicit donations. We base our selection of cloud-based
email marketing services on an analysis of Forrester [McA16]. From these results,
we derive the five services with the strongest market presence for our analysis.

3.2. MailAnalyzer: Uncovering the Cloud Exposure of Email Users 51

It should be noted that these five different classes are neither unambiguous nor
distinct. For example, larger email providers often additionally offer customers to
host customer domains (while less known, e.g., Google and Microsoft also offer email
hosting). Furthermore, a provider can offer more than one service, e.g., generic
cloud infrastructure and email marketing in the case of Amazon. Hence, only an
exhaustive picture of the landscape of cloud-based email services as derived in this
section and summarized in Table 3.1 ensures a solid understanding of the impact of
cloud computing on email users.

3.2.1.2 Privacy Problems of Cloud-based Email

Already traditional email hosted outside the cloud raises severe privacy concerns.
In a survey conducted by Udo [Udo01], 55.1 % of 158 participants named privacy
as their most important concern about email. Indeed, emails often contain private
information, ranging from conversations about doctoral appointments to business
secrets. Notably, even rather “uncritical” emails such as newsletters might reveal
sensitive information, such as interests and habits [Goo18c]. Hence, users’ privacy
concerns are well-justified and it is reasonable for users to care about who has access
to their emails. To counter these privacy concerns, users can protect their emails
using encryption. However, applying end-to-end encryption to emails is cumbersome
and only rarely used in practice [RKB+13]. Furthermore, while encryption can
protect the content (body) of an email, insightful meta information such as subject,
sender, receiver, and sending time contained in the header remain readable to any
entity storing or forwarding an email.

When users’ emails are exposed to the cloud, these already existing privacy problems
further exacerbate (cf. Section 2.3). Most notably, there is no way for users to
opt-out of being impacted by cloud computing when sending and receiving emails.
While users have the choice to choose a non-cloud-based email service for themselves,
they cannot influence which email services their communication partners are using.
Hence, even if a user deliberately refrains from using a cloud-based email service,
e.g., due to privacy concerns, such services still process a surprisingly large fraction
of a user’s total email communication.

As we show in the following, this processing of emails is especially problematic for
the hidden usage of cloud-based email services. While a user can conclude from
the sender and receiver addresses of an email whether an email is exposed to the
cloud (e.g., for @gmail.com addresses), the absence of an obvious cloud-based email
address does not guarantee that an email is not exposed to the cloud. Specifically,
the usage of email hosters, cloud infrastructure, security services, and marketing
services typically remains hidden from users.

3.2.1.3 Related Work

Different lines of research provide valuable input for our goal to uncover cloud ex-
posure of email users. To this end, we structure our discussion of related work into
approaches for understanding email, cloud computing, and cloud-based email.

52 3. Raising Awareness for Cloud Usage

Understanding Email Traffic. Ramachandran et al. [RF06] study the properties
of SPAM emails based on network-level observations, e.g., IP address ranges used
to send SPAM emails. They find that network-level characteristics can indeed be
used to tell SPAM and legitimate email apart. Motivated by these findings, Hao
et al. [HSF+09] propose a reputation engine for emails based on network-level char-
acteristics. They report that their fully automated approach achieves compara-
ble SPAM classification rates to hand-labeled blacklists. From a different line of
research, Schatzmann et al. [SMSD10] strive to classify webmail traffic to gain a
comprehensive view of the Internet email infrastructure. To this end, they develop
flow-level techniques operating solely on passive network measurements to reliably
tell webmail traffic and other HTTPS traffic apart.
Understanding Cloud Traffic. Bermudez et al. [BTMM13] utilize DNS responses
to detect cloud services based on network traffic. Their approach proofs especially
valuable with an increased fraction of encrypted network traffic. Their results reveal
that the vast majority of traffic generated by Amazon Web Services originates from a
single data center. Similarly, Drago et al. [DMM+12] study the properties of personal
cloud storage services. They perform passive measurements and distinguish between
different cloud storage services based on information contained in DNS and TLS
network packets. He et al. [HFW+13] present a measurement study to understand
the deployment of web service on cloud infrastructure. They rely on DNS probing to
identify which popular web services use Amazon’s and Microsoft’s cloud offers and
conclude that 4 % of the most popular web services run on infrastructure operated
by Amazon and Microsoft. Likewise, Fiadino et al. [FSC15] discuss an analysis
of WhatsApp based on passive measurements from the core of a cellular network
and geo-distributed active measurements. They find that WhatsApp is hosted by a
single cloud service, namely SoftLayer, in data centers in the US. From a completely
different perspective and with the goal to optimize costs and performance of cloud
storage systems, Liu et al. [LHFY13] analyze snapshots of the file system and an
access trace of a campus cloud storage system.
Understanding Cloud-based Email. Willett et al. [WS14] performed a survey to
quantify the adoption of cloud-based email services at higher education institutions
in South Africa. They observed that the majority of institutions are using cloud-
based email services or plan to do so in the near future. A study performed by Hsu
et al. [HRL14] targets the cloud email adoption of the largest Taiwanese companies.
Their results indicate that 44 % of the companies have migrated their email system
to the cloud or plan to migrate within one year. Gartner [DM16] analyzed the DNS
records of nearly 40 000 companies to check for Google or Microsoft usage as an email
hoster. They discover that about 13 % of the studied companies use one of the two
email providers. Xie et al. [XYA+07] analyzed Microsoft Hotmail traces to identify
dynamic IP addresses for SPAM filtering. Finally, van Rijswijk-Deij et al. [RJSP16]
analyze the growth of cloud-based email services based on DNS records for the .com
zone. They observe that the largest (by the number of domains) cloud-based email
hosters are Google, Microsoft, and Yahoo.
While these works highlight the importance of understanding the impact of cloud
computing on email users, an empirical evaluation—which is the focus of our work—
of both the cloud usage among the email infrastructure and the users’ exposure to

3.2. MailAnalyzer: Uncovering the Cloud Exposure of Email Users 53

cloud services, has not been done so far. Shedding light on this question is rele-
vant to better understand potential cloud-related privacy exposures of email. Such
understanding is especially relevant since even if users decide to refrain from us-
ing cloud-based email services themselves, their privacy can still be impacted by
communication partners that are using cloud services. Hence, we argue that under-
standing the impact of cloud computing on email users is an important question, as it
(i) ascertains whether user privacy is indeed at risk, (ii) provides insights into which
cloud-based email services are the most often used, especially with respect to hidden
cloud usage, and (iii) lays the foundation for deriving appropriate countermeasures.
Following the classification derived in this section, we next introduce MailAnalyzer,
our approach which we use to assess the cloud exposure of email users.

3.2.2 Detecting Cloud Usage of Emails

To detect cloud usage of emails, we present MailAnalyzer which reveals the cloud
exposure of email users by analyzing received emails for the presence of cloud ser-
vices. MailAnalyzer dissects the header information of emails and compares certain
header information against patterns we derived for our set of 31 cloud services.

In the following, we identify the individual parts of an email header that can be used
to discover the usage of cloud services, show how patterns to uncover cloud usage
can be derived, and discuss limitations of our approach.

3.2.2.1 Dissecting Email Headers to Detect Cloud Usage

MailAnalyzer processes header information of received emails to detect cloud usage.
To illustrate our approach, we partially depict the header of an email exchanged
between a Gmail account and a university account in Listing 3.1. In the following,
we identify the parts of an email header that can be used to reveal exposure to cloud
services. We differentiate between information that directly allows the detection of
cloud usage (green) and information that hints at potential cloud usage based on
sender and receiver information (bright red), which can be used to rule out hidden
cloud usage. To leverage information contained in email headers to detect cloud
usage, we require patterns that enable the detection of a specific cloud service.
Most notably, these patterns include information on the utilized IP addresses and
DNS names of cloud-based email services. Hence, in the following, we do not only
identify those parts of email headers that can be used to detect cloud usage, but also
illustrate how the corresponding patterns can be derived from public information.

Received Lines. The main purpose of received lines is to aid debugging of email fail-
ures [Kle08]. To this end, each email server that receives an email (either for forward-
ing or for final delivery) has to prepend a received line to the email’s header [Kle08].
While the exact format of received lines can deviate from the specification [Kle08],
they typically contain the IP address (a typically unique identifier assigned to each
networked computer [Pos81]) and DNS hostname (a human readable identifier of a
networked computer that can be mapped to an IP address [Moc87]) of the current

54 3. Raising Awareness for Cloud Usage

1 Received : from mail -qk0 -f169. google .com ([209.85.220.169])
2 by mx -2. rz.rwth - aachen .de with ESMTP/TLS/AES128 -SHA;
3 07 Nov 2016 14:37:56 +0100
4 Received : by mail -qk0 -f169. google .com with SMTP id n21so64861883qk←↩
5 a.3 for <|||@comsys .rwth - aachen .de >;
6 Mon , 07 Nov 2016 05:37:56 -0800 (PST)
7 DKIM - Signature : v=1; a=rsa - sha256 ; c= relaxed / relaxed ;
8 d= gmail.com; s =20120113; h=mime - version :reply -to:from:date:←↩
9 message -id: subject :to; bh =0i+V1 [...] YJrA =; b=bb1p9 [...] n0Bw ==

10 X-Google -DKIM - Signature : v=1; a=rsa - sha256 ; c= relaxed / relaxed ;←↩
11 d=1e100.net; s =20130820; h=x-gm -message -state:mime - version :←↩
12 reply -to:from:date:message -id: subject :to; bh=0i+V1 [...] YJrA =;←↩
13 b=hTvXs [...] aMA ==
14 X-Gm -Message -State : ABUng [...] DCw ==
15 X- Received : by || with SMTP id a10mr6457197qkh .66.1478525←↩
16 874807; Mon , 07 Nov 2016 05:37:54 -0800 (PST)
17 Received : by ||| with HTTP; Mon , 7 Nov 2016 05:37:54 -0800←↩
18 (PST)
19 Reply -To: |||@ gmail.com
20 From: ||| <||@ gmail.com >
21 Date: Mon , 7 Nov 2016 08:37:54 -0500
22 Message -ID: <CADLj [...]2 b+9 g@mail . gmail.com >
23 Subject : |||
24 To: ||| <||@comsys .rwth - aachen .de >

Listing 3.1 Information contained in email headers provides MailAnalyzer with different op-
portunities to detect exposure to cloud-based email services.

and the previous email server in the delivery chain as well as a human-readable
timestamp (cf. Lines 1 to 6 in Listing 3.1).

The complete set of received lines in an email enables us to derive the complete path
of email servers that this email traversed. Hence, we can use the set of corresponding
IP addresses and hostnames to detect usage of cloud services. With respect to
utilizing IP addresses, most, especially larger, cloud infrastructure services publish
the IP addresses they use, e.g., to allow customers to configure their firewalls. We
could retrieve information on used IP addresses for six cloud infrastructures directly
from the service. Similarly, all eight cloud-based email security services make their
IP addresses publicly available, as their customers must restrict their email servers
to only accept incoming emails from these IP addresses.

All cloud-based email providers we study publish the IP addresses they use to send
emails for two reasons: (i) to ease whitelisting in firewalls or (ii) to protect against
forging of sender names, e.g., using the sender policy framework [Kit14]. For cloud-
based email hosters, we were able to directly retrieve IP addresses for two of them.
In contrast, we were not able to retrieve information on used IP addresses directly
from the service for all five cloud-based email marketing services, three email hosters,
and four cloud infrastructures. Only in these cases, we looked-up the autonomous
system number(s) [HB96] used by these services and retrieved the associated IP
address ranges from the border gateway protocol (BGP) information provided by
ipinfo.io and radb.net. In the end, we were able to retrieve information on the
utilized IP addresses for all 31 cloud services.

3.2. MailAnalyzer: Uncovering the Cloud Exposure of Email Users 55

Similar to IP addresses, some cloud-based email services also publish the DNS host-
names they use. However, this fraction of services is significantly smaller. Hence, we
require a different approach to obtain information on used hostnames. To this end,
we augment the information we were able to retrieve directly from services with
information from SenderBase [Cis16] and thus are able to retrieve the hostnames
used by all 31 cloud services under study. In the context of our study, we consider
hostnames to be more reliable than IP addresses, as they are more stable over time.

Notably, the standard defining the Simple Mail Transfer Protocol (SMTP) used for
sending emails forbids removing or modifying any received lines from an email header
[Kle08]. While email servers can violate this standard, effective countermeasures are
widely deployed today [BE13]. We hence assume that the information in email
headers has not been tampered with.

Custom Header Fields. Besides explicitly standardized header fields, email clients
and servers can also include arbitrary custom header fields [Res01]. Typically, these
custom header fields are prefixed with “X-” (cf. Lines 10 to 14 in Listing 3.1) and
are utilized especially by larger email services. Furthermore, header fields initially
used by only one email service, e.g., DomainKeys Identified Mail (DKIM) signatures
[CHK11], emerged into now standardized and more widely deployed header fields.
Such header fields are nowadays used by more than one email service and hence
their mere existence does not directly point to a specific email service. Still, these
header fields are valuable as they often contain information on the email service that
added them (cf. Lines 7 to 9 in Listing 3.1). To identify custom header fields, we
manually clustered the header fields present in a subset of our datasets and distilled
those header fields unique to a cloud service. As a result, we were able to retrieve
custom header fields for seven cloud services, which are mostly email providers.

Sender and Receiver Information. Each email contains information on the sender
and the receiver(s) of this email (cf. Lines 19, 20, 22, and 24 in Listing 3.1). While
this information is not reliable (it can easily be spoofed), it provides a visible indi-
cator for cloud usage. For example, if a user receives an email from an @gmail.com
address, she assumes that this email has been processed by Google’s email servers.
Although we cannot use sender and receiver information to detect cloud usage (due
to its unreliability), we can use it to decide whether detected cloud usage is hid-
den from the user. Sender and receiver information are especially relevant for email
providers, as the provider is visible in the email address. We manually identified
the hostnames of email addresses used by all six email providers in our study. Addi-
tionally, we use the hostnames collected for all 31 cloud services to detect associated
senders and receivers. This approach is very optimistic and can lead to false posi-
tives. As we use senders and receivers merely to preclude hidden cloud usage, false
positives will only lower the fraction of hidden cloud usage. Hence, we still retrieve
a lower bound for the prevalence of hidden usage of cloud-based email services.

3.2.2.2 Limitations

Our methodology for quantifying the prevalence of cloud computing by matching
patterns in headers of received emails with information on cloud services is limited

56 3. Raising Awareness for Cloud Usage

in three ways. First, our approach is inherently restricted to incoming emails. As
we rely on header information inserted by cloud services, our method cannot be
used to detect usage of cloud services in outgoing emails. To partly account for this,
our active measurements (cf. Section 3.2.3) uncover the cloud usage when sending
emails, e.g., the email servers processing the complete set of .com/.net/.org domains.
However, emails typically traverse multiple servers and from the outside we can
observe only the first hop. Without the cooperation of the receiver of an email, this
limitation likely cannot be solved.

Second, detection patterns can change over time. Hence, the patterns we derived
to detect cloud usage might not be accurate for the past. However, we observe
that information on hostnames and custom header fields remain relatively constant
over time. With respect to IP addresses used by cloud services, we observed in past
years (for big infrastructure providers), that their IP address ranges constantly grow
and previously used IP addresses are not abandoned. To further account for this
limitation, we randomly sampled a small subset of very old emails from our mailing
lists dataset to verify that no false positives occurred. Finally, we restrict ourselves
to a limited set of 31 representative cloud services. Enlarging this set is technically
possible but requires manual curation of cloud services IP addresses and hostnames.
Furthermore, we remark that service popularity can differ between different regions
(geographic bias in data and patterns). To verify that our selection of services is
representative, we manually checked undetected hostnames, custom header fields,
and sender names for our mailing lists dataset to ensure that we did not miss any
widely used service.

3.2.3 Prevalence of Cloud Email Infrastructures

We begin our analysis of the cloud usage of emails by assessing the prevalence of
cloud services in the global email infrastructure, i.e., the share of email servers hosted
in the cloud, contacted when sending email. To this end, we perform two large-scale
active measurements.

Email Servers Running on Cloud Infrastructure. Our first measurement aims at
assessing all publicly reachable email servers. This study utilizes a trace of a port
scan on Port 25/TCP used by the email protocol SMTP performed on November
19, 2016, covering the entire IPv4 address space and subsequently grabbing SMTP
banners [DAM+15]. Out of 16.3 million reachable IP addresses, we classify 6.4
million as valid SMTP servers indicated by a valid 250 status code in the SMTP
EHLO banner sent by the server.

We then apply our collection of cloud infrastructure IP address ranges to identify
email servers hosted by the ten most important cloud infrastructure providers. Our
results in Figure 3.2 show that 1.44 % (93 k IP addresses) of the email servers on
the Internet are operated in the networks of these cloud infrastructure providers.
Notably, 60.13 % (56 k IP addresses) of these servers are operated on infrastructure
provided by Amazon. These results indicate that cloud infrastructure is indeed
utilized to provide email services. However, their footprint in terms of IP addresses
is rather small and unlikely to serve as a proxy for usage or popularity.

3.2. MailAnalyzer: Uncovering the Cloud Exposure of Email Users 57

Figure 3.2 Cloud usage among all publicly
reachable SMTP servers (in permil).

Figure 3.3 Cloud usage among all .com/
.net/.org domains (in percent).

Cloud Usage by .com/.net/.org Domains. While the first measurement assesses
the cloud usage of all publicly reachable email servers, it does not identify whether
the identified IP addresses are actually in use for receiving email. That is, while the
previously identified IP addresses are publicly reachable email servers, they do not
necessarily have to be configured by any domain as mail exchange (MX) to actually
receive email. To answer the question on the actual usage of cloud-based email
infrastructure for receiving email, we performed a second measurement querying the
MX DNS records of the complete set of 154 million .com/.net/.org domains (DNS
zone files provided by Verisign and the Public Interest Registry) on Nov 20, 2016.

We obtained MX records for 140 million domains, while 1.2 million records were
invalid and 12.8 million suffered from authoritative name server errors or timeouts.
Out of the obtained 31.9 million distinct MX records, 30.6 million records could be
resolved to 2.8 million distinct IP addresses. We remark that the number of detected
IP addresses is lower as compared to our first measurement, since (i) not the entire
DNS space was scanned and (ii) not every IP must be configured to act as MX. The
intuition behind this measurement setup is that any email server configured as MX
in the DNS is indeed intended to receive email.

Given this additional DNS information, we are now able to match IP addresses and
hostnames against the set of 31 cloud-based email providers listed in Table 3.1 In
Figure 3.3, we show the relative share of domains being served by email servers of one
of these 31 cloud-based email services for all 154 million .com/.net/.org. Our results
show that, in total, 52.27 % of the probed domains use a cloud-based email service.
These numbers are largely dominated by GoDaddy, which accounts for 35.36 % of
the domains served by a small number of servers (only 1732 distinct IP addresses
for our vantage point). While the extent of GoDaddy’s dominance surprises, the
general trend is reasonable since GoDaddy is the world’s largest domain registrar
and also often used by domain parkers, i.e., people registering domains to sell them
later on and not actually intending to use them (e.g., to receive email) [ME10].

The other widely used services are the all-purpose services Google and Microsoft,
email hosters (1&1, OVH, Strato), cloud infrastructure providers (Rackspace, Ama-
zon), and email security services (McAfee, Symantec). The dominance of Amazon
in our first IP-based measurement is not reflected in our DNS measurement, i.e.,

58 3. Raising Awareness for Cloud Usage

Dataset Period Emails Public Comments

Mailing lists 01/95–09/16 22 930 801 � —
Apache 02/95–09/16 15 516 752 � 1507 open source lists
Dovecot 07/02–09/16 115 007 � 3 open source lists
FreeBSD 01/95–09/16 3 654 624 � 160 open source lists
IETF 01/95–09/16 2 043 606 � 949 standardization lists
openSUSE 05/06–09/16 1 600 812 � 85 open source lists

WikiLeaks 09/07–07/16 254 476 � —
AKP 11/09–07/16 231 388 � Internal emails
DNC 01/15–05/16 15 848 � Internal emails
Podesta 09/07–03/16 7 240 � Internal emails

SPAM 02/07–09/16 7 788 560 � non-public SPAM traps

Users 10/01–09/16 873 587 � emails of 20 users

Table 3.2 We assembled different datasets of emails ranging from mailing lists to private
emails of 20 volunteers that participated in a user study, in total accumulating to 31.85 million
emails (number of emails obtained after cleanup).

Amazon is often used to host email servers in the cloud, but these email servers
are not configured as MX for a large fraction of the tested domains. Further, email
for a large number of domains can be handled by only a small number of public IP
addresses. Subsequent infrastructure (e.g., email forwarded to another server after
processing by a cloud-based security service) is not visible in this analysis since the
analyzed MX records denote the first server hit when sending email to a domain.
Our DNS analysis shows that an email sent to a random .com/.net/.org address has
a more than 50 % chance to end up in the cloud.

This first study provides a broad assessment of the prevalence of cloud services in
the global email infrastructure. It shows that scanning by IP addresses reveals a
different cloud provider distribution than probing the DNS. However, it does not
provide indications of usage frequencies or service popularities, which motivates us
to analyze exchanged emails in our second study.

3.2.4 Real-World Cloud Usage of Received Emails

To understand the usage frequencies of cloud-based email infrastructure and hence
impact on the privacy of users, we set out to detect cloud usage by applying Mail-
Analyzer to received emails. In the following, we first describe how we assemble
different datasets of in total 31 million emails. We then apply MailAnalyzer to these
emails to study the cloud usage of individual emails and uncover the hidden usage
of cloud-based email services.

3.2.4.1 Datasets

A thorough study of the prevalence of cloud computing among email users requires
the analysis of a sufficiently large set of exchanged emails. We, therefore, base our

3.2. MailAnalyzer: Uncovering the Cloud Exposure of Email Users 59

analysis on a set of 31.85 million emails exchanged between 1995 and 2016, obtained
from public mailing list archives, SPAM traps, WikiLeaks, and 20 volunteer users—
covering a diverse user base. Since these datasets partly begin before the emergence
of cloud computing, we can observe its growing adoption from the very beginning.

For our analysis, we only consider standard conform emails [Kle08], i.e., emails
containing the mandatory message ID and date header fields. Furthermore, we only
consider emails with at least one received line. By doing so, we eliminate emails
only consisting of error messages. We summarize key characteristics of our datasets
in Table 3.2 (number of emails obtained after cleanup).

Mailing lists. We downloaded the public mailing list archives from the Apache Soft-
ware Foundation, Dovecot, FreeBSD, the Internet Engineering Task Force (IETF),
and openSUSE. These emails mainly contain discussions and announcements regard-
ing open source development and standardization efforts.

WikiLeaks. This dataset contains formerly private emails that have been made
public by WikiLeaks [Wik16]. These emails originate from the Turkish Justice and
Development Party (AKP), the US Democratic National Committee (DNC), and
Hillary Clinton’s campaign chair John Podesta.

SPAM. In this dataset, we combine emails collected by various SPAM traps (i.e.,
inboxes intentionally created to only receive SPAM) since 2007 [HGC12,SHKV14].

Users. We recruited 20 volunteers (mostly with a technical background) from Ger-
many who agreed to run MailAnalyzer on their personal and (partly) professional
emails. Besides communication with other people, these emails also contain auto-
matically generated emails such as newsletters, commit messages, and SPAM.

Parts of our datasets are inherently biased to contain significant cloud usage when
the recipient of the emails uses a cloud-based email service herself. We cope with
this bias by ignoring those cloud services that have been used to receive the emails
under study. Hence, we ignore AppRiver for WikiLeaks DNC, Google for WikiLeaks
Podesta, and 1&1 for SPAM. Furthermore, we blacklist Google for SPAM, as we
observed massive amounts of faked received lines for Google in this dataset. Finally,
we asked our volunteers to blacklist those email services that they used themselves
to receive their emails.

Ethical and Privacy Considerations

As we operate on potentially sensitive data of individual users, we designed all our
experiments following the basic principles of ethical research [DK12] and of privacy
by design [Cav11]. The goal of this work is to understand the prevalence of cloud
computing among email users to then inform users about privacy risks, uncover the
need for countermeasures, and hence, ultimately, increase privacy for email users.
Having this goal in mind, we designed all experiments such that the risk of (inadver-
tently) harming the privacy of users is minimized. To this end, we excluded exact
sender identifiers and the actual content of emails from our analysis. Thereby, we
unlink potentially sensitive information from identities. Furthermore, we aggregate
all our results in a way that prevents drawing conclusions about individuals.

60 3. Raising Awareness for Cloud Usage

Figure 3.4 In the past, the cloud usage of emails steadily increased to 20–40%, but now shows
a remittent tendency with a cloud usage of 15–25% in 2016.

3.2.4.2 Impact of Cloud Computing on Email Users

With MailAnalyzer, we set out to study the impact of cloud computing on email
users. To this end, we first explore the exposure of individual emails to cloud services
by inspecting the rise of cloud-based email services, identifying the cloud services
with the highest usage, and investigating trending email services closer.

The Rise of Cloud-based Email Services

The first question we study is how large the usage of cloud-based email services is
and how it has developed over time. To demonstrate this development, we report
on the number of emails processed by cloud services per year for each data set
in Figure 3.4. We consider an email to be processed by a cloud service if it was
processed by an SMTP server [Kle08] of a cloud service covered by our analysis as
listed in Table 3.1 on any hop between the sender and the receiver.

When looking at mailing lists (by far the largest dataset in our analysis with nearly
23 million emails), we observe that the rise of cloud-based email services first gained
traction in the late 1990s with the early email offers of AOL, Microsoft, and Apple.
This rise increased in 2004 when Google’s Gmail was launched, peaking at 24.12 %
in 2010. Since then, we observe a decrease of cloud usage, leading to a usage of
cloud email services of 14.45 % in 2016. For the emails of our volunteer users, we
observe a quite similar trend until 2010, with early-adopters of cloud email leading
to a first peak of 19.63 % cloud usage already in 2003. In contrast to the mailing lists
dataset, cloud usage of our volunteers continues to grow beyond 2010 to 36.11 % in
2014 before surprisingly dropping to 25.41 % in 2016.

While the data at our hands does not allow us to derive a definitive reason for
this observation, one possible explanation is that persons involved in open source
development and standardization efforts could be more privacy-sensitive and hence
avoid large cloud-based email services. The WikiLeaks dataset shows a similar, yet
more extreme trend with a peak of 42.31 % cloud usage in 2011. Here, the sudden
decrease in cloud usage (to 13.21 % in 2016) can mostly be attributed to a decreasing
cloud use in the emails from AKP in 2016. For SPAM emails, we assumed a lower

3.2. MailAnalyzer: Uncovering the Cloud Exposure of Email Users 61

Figure 3.5 The cloud services with the highest usage in 2016 vary between our datasets, but
Google plays an important role for the mailing lists, WikiLeaks, and users dataset.

fraction of cloud usage, as cloud-based email service providers have a strong interest
in SPAM prevention. Indeed, we see little impact of cloud computing on SPAM
emails, far less than in other datasets. The spike for 2015 corresponds to a significant
increase in SPAM emails apparently received from the hoster OVH. Overall, we do
not observe a significant impact of cloud computing on SPAM emails with a cloud
usage of only 1.22 % in 2016.

Cloud Services with Highest Usage

Considering the trend of a rise in cloud email usage, an immediate question is which
services contribute most to this cloud usage. To study this question, we consider
the usage of individual cloud services in each of our datasets for the year 2016.
Figure 3.5 shows the fraction of emails exposed to a specific service for each dataset.

For the mailing lists dataset, we identify Google as the service with the highest cloud
usage: 9.95 % of mailing list emails were processed by Google in 2016. Amazon,
Microsoft, Rackspace, and Yahoo already show a notable distance with a usage be-
tween 0.37 % and 1.37 %. We make similar observations for WikiLeaks, with Google
(9.16 %) clearly leading in front of Microsoft (2.06 %) followed by Amazon, Sales-
force, and Yahoo, each well below 1 %. Given the overall low cloud usage for the
SPAM dataset in 2016, the results for the individual services provide limited insight.
The top infrastructure used for SPAM, according to our data, is OVH (1.03 %).

For the emails in the users dataset, we again observe the highest cloud usage for
Google (11.44 %), this time closely followed by Amazon (6.22 %), 1&1 (5.11 %), and
Microsoft (4.26 %). The comparable high usage of 1&1 likely corresponds to our users
being from Germany, where 1&1 is one of the leading email hosters and providers.
The higher usage of Amazon services can partly be attributed to emails sent by
Amazon’s Simple Email Service, e.g., newsletters and other marketing emails, which
naturally are more relevant for the users dataset than, e.g., the mailing lists dataset.

These results highlight that the use of individual cloud services depends on the
dataset and, hence, the importance of combining information from different sources
to gain a clear picture of the impact of cloud computing on email users. We thus
consider all four datasets to derive the most used services for 2016, which provides

62 3. Raising Awareness for Cloud Usage

(a) Mailing lists

(b) WikiLeaks (c) Users
Figure 3.6 The usage of individual cloud services differs between the mailing lists, Wikileaks,
and users datasets, but overall a small number of services clearly dominate.

us with Google, Amazon, Microsoft, Rackspace, and 1&1 as the five services with
the highest fraction of emails exposed to them across all datasets.

Trending Email Services

Next, we study the question on how these five cloud services with the highest usage
in 2016 emerged over time, shown separately in Figure 3.6 for the mailing lists,
Wikileaks, and users datasets (we omit SPAM given its low overall cloud usage).

Cloud usage of the mailing lists dataset (Figure 3.6a) is nearly exclusively dominated
by Google, surpassing Yahoo quickly after Gmail’s launch in 2004. For the Wikileaks
dataset (Figure 3.6b), Google and Microsoft are on par, each accounting for more
than 20 % of the email traffic in some years and hence a large fraction of users’
emails. While the users dataset (Figure 3.6c) initially is dominated by 1&1 (see
above), we observe a steady increase for emails from Google and Amazon.

To conclude our study of the impact of cloud computing on email users, we observe
a surprisingly high usage of cloud computing for email exchanges. Between 13.21 %
(WikiLeaks) and 25.41 % (users) of received emails are processed by at least one
cloud service in 2016. Here, it is important to remark that we only account for cloud
services that are not utilized by the recipient herself (e.g., to host her emails), but
for cloud services hit on the way to the recipient. Depending on the dataset, between

3.2. MailAnalyzer: Uncovering the Cloud Exposure of Email Users 63

Figure 3.7 Emails with hidden cloud usage among the total set of emails. Hidden usage of
cloud services follows a similar trend as cloud usage in general.

9.16 % and 11.44 % of received emails are processed by a single cloud service in 2016
(most notably Google, Amazon, and Microsoft). Hence, these services learn about
a large fraction of the users’ email communication. In this situation, MailAnalyzer
supports users by uncovering a source for potential privacy risks.

3.2.4.3 Hidden Usage of Cloud-based Email Services

The usage of cloud email services on the way from the sender to the recipient can
be hidden to the user. We define the usage of a cloud service as hidden if this cloud
service is not obviously used as the email provider of the sender or any recipient,
i.e., the cloud service cannot be inferred from email addresses in the sender or recip-
ient fields. For example, if any sender or recipient address ends with @gmail.com,
the usage of all services attributed to Google is not hidden. Hidden usage of cloud
resources can raise privacy concerns, e.g., when communication (meta) data should
not be exposed to a third party operator [MSWP14]. We, therefore, aim at under-
standing the extent to which hidden exposure of emails to cloud services happens
and to which services we can attribute the most hidden cloud usage.

General Trend of Hidden Cloud Exposure

Again, we first study the general evolution of hidden cloud exposure over time for
our different datasets in Figure 3.7. For each dataset, we plot the overall fraction of
hidden cloud usage among the entire set of emails per year. We define cloud usage
to be hidden if at least one of the utilized cloud services is neither detectable from
the sender field nor from any of the recipient fields.

The hidden cloud exposure for the mailing lists dataset shows a steady increase,
similar to the overall increase in cloud exposure. In 2016, we observe that 7.53 %
of all emails in our dataset use cloud services hidden to the user (see Figure 3.7),
which amounts to 52 % of all emails with cloud usage (i.e., 14.45 % of all emails in
our dataset, see Figure 3.4).

Similarly, we observe that 70 % of cloud usage remains oblivious to users for the
users dataset (i.e., 17.72 % emails with hidden cloud usage vs. 25.41 % emails with

64 3. Raising Awareness for Cloud Usage

Figure 3.8 Hidden cloud usage across our four datasets mainly results from email hosters and
cloud infrastructure offers as well as hybrid cloud-based email offers.

any cloud usage in 2016), raising privacy concerns. For WikiLeaks emails, we observe
a lower hidden cloud usage than for the mailing lists and users datasets. Given the
overall high fraction of cloud usage for the WikiLeaks emails, these results indicate
that the cloud usage during this period can mostly be attributed to emails that
originate from cloud-based email providers. Here, we observe that 32 % of the cloud
usage cannot be observed by users (i.e., 4.21 % vs. 13.21 % in 2016). In contrast, for
SPAM emails cloud usage happens nearly exclusively hidden, as seen by the nearly
identical curves in Figures 3.4 and 3.7. This suggests that the cloud portion of SPAM
does not originate from (potentially hacked) cloud email accounts but instead from
email hosters or cloud infrastructure.

Cloud Services with Highest Hidden Usage

As a large portion of cloud exposure is hidden to users, the immediate question is to
which services the most hidden cloud usage can be attributed. We thus study the
hidden usage of individual cloud services in 2016 for each dataset in Figure 3.8.

Again, we observe the importance of covering different email sources, as the results
for the hidden usage of specific services vary across the datasets. Nevertheless, we
can derive what types of cloud email services (cf. Section 3.2.1.1) account for hid-
den cloud usage: (i) email hosters (e.g., 1&1 with 4.20 % in the users dataset) and
(ii) cloud infrastructure (e.g., Amazon with 5.28 % in the users dataset). Further-
more, hybrid services such as Google and Microsoft that offer email hosting and cloud
infrastructure have a significant impact on hidden cloud usage. As expected, we do
not observe hidden usage of cloud-based email providers (e.g., AOL or Comcast) as
usage of an email provider can directly be derived from an email address.

In summary, we observe that (less technically proficient) users remain oblivious to
the hidden cloud usage of 30 % to 70 % of all emails exposed to the cloud. This
hidden usage predominantly originates from email hosters and cloud infrastructure.
When sending emails, some of this hidden usage could be a priori uncovered by
analyzing DNS MX records of the recipient domains. Other cloud exposure (e.g.,
subsequent use of cloud services behind a security service or forwarding of emails to
cloud services) cannot be detected by the sender.

3.2. MailAnalyzer: Uncovering the Cloud Exposure of Email Users 65

3.2.5 Summary and Future Work

The goal of our work is to provide users with an understanding of their individual
exposure to cloud-based email services. This topic is important since the ongoing
transformation of the email architecture from a largely decentralized one towards
a more centralized one can have consequences for privacy and security. To tackle
this problem, we propose MailAnalyzer which uses public information to detect and
quantify the usage of cloud-based email services and apply it in two studies. Our
first study analyzes email infrastructures hosted in the cloud, i.e., servers hit when
sending email. We analyzed all publicly reachable email servers obtained by scans
of the entire IPv4 address space and by querying the complete set of 154 million
.com/.net/.org domains. Our second study then focuses on understanding the user
exposure to these infrastructures when receiving email by analyzing more than 31
million received emails. From our study results, we can derive three key observations.

First, we observe that exchanged emails tell a different story than infrastructure
measurements. With regards to measurement studies, we show the difference be-
tween three perspectives on email: (i) size of the public-facing infrastructure (i.e.,
number of SMTP IP addresses hosted in cloud infrastructures), (ii) email servers
configured for domains (i.e., DNS MX records), and (iii) exchanged emails. All
three perspectives provide interesting insights: infrastructure studies yield insights
into the adoption of cloud email services, both with respect to the number of email
servers in the cloud and the number of hostnames using these servers. In contrast,
our analysis of exchanged emails yields insights into the actual cloud exposure ex-
perienced by users. Thus, all these perspectives are relevant for future studies.

Second, we observe that users’ emails are frequently exposed to the cloud. Between
13.21 % (WikiLeaks) to 25.41 % (users) of all emails received in 2016 were processed
by cloud services. Regarding the email infrastructure, our DNS analysis shows that
email sent to a random .com/.net/.org address has a more than 50 % chance to end
up in the cloud. While the concrete services and their exposure level varies between
the datasets (and users), we observe a concentration of few large infrastructures
that process substantial fractions of the overall email traffic. This concentration
thus opens users’ questions on privacy and security implications of email becoming
more centralized, i.e., single providers having access to large fractions of the overall
set of exchanged emails.

Finally, our results show that the usage of cloud-based email services happens un-
observable for users. Surprisingly, for 30 % to 70 % of the emails that are processed
by the cloud, this cloud usage is hidden for (less technically proficient) users. That
is, this cloud usage cannot be inferred from email addresses, e.g., @gmail.com. One
reason for hidden cloud exposure is the ability to have a domain’s MX record con-
figured to a cloud email server (e.g., email intended for a state-owned university can
be managed by a third party cloud operator).

Based on our results, we identify two promising directions for future work. First,
when considering the cloud exposure in received emails, we can make cloud usage
evident to users by implementing MailAnalyzer in email programs, thereby raising
their awareness for cloud usage and especially the hidden usage of cloud resources. To

66 3. Raising Awareness for Cloud Usage

correlate the resulting quantified cloud usage to potential privacy risks, MailAnalyzer
could be extended with the possibility to compare identified (hidden) cloud exposure
to those of users’ peers. We provide a first feasibility study of such a comparison
approach in the context of the cloud usage of mobile apps in Section 3.4.

A second direction of future work could be concerned with the cloud exposure when
sending email. Since email can be transparently forwarded to cloud services, e.g.,
to security cloud solutions for virus checking by the operator or to private cloud
email accounts by the receiver, hidden cloud exposure often cannot be inferred by
the sender of an email and hence can only be detected by the receiver through
email header analysis. Hence, future work should be concerned with the question
on whether email routing and processing should or can be made controllable, e.g.,
using a privacy policy language such as the one presented in Section 4.2.

Furthermore, future work could address the question of how end-to-end encryption
for email and cloud services’ access to parts of emails can be combined, similar to
the concept of mcTLS for end-to-end encrypted network connections [NSV+15]. For
example, by granting security services only access to selected parts of an email (e.g.,
to perform virus checking on executable attachments) security and privacy concerns
could be moderated. Our work to understand the prevalence of cloud email provides
the starting point for such highly necessary countermeasures.

By uncovering the cloud exposure of email users, we addressed cloud computing’s
core problem of technical complexity and missing transparency for email communi-
cation as a first prominent deployment domain of cloud services. In the following,
we complement these efforts by applying a related approach to study the cloud usage
of mobile apps on smartphones.

3.3 CloudAnalyzer: Uncovering the Cloud Usage of
Mobile Apps

Smartphones have become an indispensable tool for storing and accessing personal
information, ranging from contacts and calendar entries over pictures to work doc-
uments [EGH+14]. Additionally, smartphones produce data through their sensors
which, e.g., enables localization or activity recognition [GCEC12,QG12]. With the
right permissions, this abundance of sensitive data can be easily accessed by mobile
applications (apps) through dedicated APIs [PHW17]. Indeed, app developers in-
creasingly rely on user data to improve the functionality of their apps or to increase
revenue with targeted advertisement [ISKČ11].

At the same time, major parts of apps’ backend functionality, including tracking and
advertising, are nowadays realized via cloud services [EGH+14,FKB+15]. These ser-
vices range from cloud infrastructure and content delivery networks (e.g., AWS and
CloudFront) over reporting, analytics, and advertisement services (e.g., Crashlytics,
Flurry, and AdMob) to consumer services (e.g., YouTube and Facebook). In Sec-
tion 3.3.3.3, we discover that the most popular apps on Google Play utilize 4.3 cloud
services per app on average, which highlights the prevalence of cloud usage.

3.3. CloudAnalyzer: Uncovering the Cloud Usage of Mobile Apps 67

Figure 3.9 Today, mobile apps running on smartphones expose an abundance of private infor-
mation they can access to cloud services, which often are built upon other cloud services.

While the utilization of these cloud services benefits app developers, users are con-
fronted with severe privacy risks. In contrast to traditional privacy risks of cloud
computing (cf. Section 2.3), these issues further exacerbate considering the abun-
dance of privacy-critical data on smartphones [GCEC12,EGH+14]. As we illustrate
in Figure 3.9, sensitive information ranging from contact lists over location informa-
tion to private pictures is accessible by apps and can then be transferred to cloud
services. In this situation, users have no knowledge about which cloud services are
utilized by apps running on their smartphones. However, combining the sensitive
data stored and sensed by smartphones with cloud computing—characterized by
de facto monopolies, technical complexity, inherent non-transparency, and opaque
legislation—raises severe privacy risks (cf. Section 2.3). Even worse, cloud services
can be realized on top of each other, leading to indirect cloud exposure which is even
harder for users to grasp. As an example, our work reveals that Unity (a popular
game development platform) utilizes Amazon EC2 to (partly) deliver its services.

Any cloud service receiving sensitive information can use it for unintended pur-
poses, e.g., personalized advertising [ISKČ11] or forwarding to other entities, which
becomes especially problematic since typically multiple cloud services have access to
sensitive information forwarded by apps on smartphones. Furthermore, users have
no guarantee that their data is handled according to legal requirements [ISKČ11].
Resulting from the de facto monopolized landscape of cloud services, data is further
susceptible to breaches (cf. Section 3.2). To put users back into control, we consider
it important to raise their awareness of these risks [MPS+13] and provide them with
the information required to take appropriate measures to protect their privacy.

Related work confirms the privacy risks of the access of apps to an abundance of
private information. To assess and counter these risks, approaches presented in
related work aim at detecting privacy leakage by analyzing traffic [SH15, RRL+16]
or tracking apps’ data flows [ARF+14, EGH+14]. These streams of related work
provide information on what data is leaked. So far, a way for smartphone users
to detect where (to which cloud services) their data is leaked by the apps on their
smartphones, as a foundation to protect their privacy, is missing.

To bridge this gap between users’ knowledge and information required to enforce
their privacy, we present CloudAnalyzer, which provides users with detailed statistics
of their personal cloud exposure caused by their smartphone apps. CloudAnalyzer
locally monitors the network traffic produced by apps running on a user’s device and
compares observed communication patterns to 55 representative cloud services.

68 3. Raising Awareness for Cloud Usage

Figure 3.10 In the landscape of mobile cloud services, services on upper layers can, but not
necessarily have to, rely on services on lower layers to provide their functionality.

Apart from revealing the exposure to cloud services caused by smartphone apps,
CloudAnalyzer also detects the prevalent indirection in cloud usage where cloud
services subcontract each other to realize their functionality. Based on CloudAna-
lyzer’s observations, we support users in critically reviewing their exposure to cloud
services and, as a result, change their app usage behavior or even decide to refrain
from using certain apps. Likewise, CloudAnalyzer is a valuable tool for researchers
to understand the characteristics of the usage of cloud services by smartphone apps
and the relationships between cloud services.

CloudAnalyzer is available for users of Android devices via the Google Play store3.
Furthermore, we provide access to its source code as well as to the detection patterns
for mobile cloud services under the GNU GPL license (version 3)4.

3.3.1 Mobile Cloud Services and Privacy

Developers for mobile platforms increasingly rely on cloud services [XEG+11]. Their
motivation ranges from reduced effort over cost reductions to the possibility to inte-
grate third party services, e.g., advertising networks. We first provide an overview
of the landscape of mobile cloud services and derive a representative set of services.
Based on this analysis, we distill privacy risks in the face of potentially sensitive
data collected by smartphones and discuss related work.

3.3.1.1 The Landscape of Mobile Cloud Services

To understand the extent of cloud exposure through mobile apps and the resulting
privacy risks, we identify classes of mobile cloud services and their interweaving. As
shown in Figure 3.10, a major portion of cloud usage originates from SDKs that
app developers include to realize functionality ranging from interaction with social
networks over crash reporting to targeted advertisement [BHJ+14]. Depending on
the individual SDK, different cloud services are utilized.

In the following, we discuss five different classes of mobile cloud services we identified
and point our their relationships. Furthermore, we compile a representative list of

3https://play.google.com/store/apps/details?id=de.rwth.comsys.cloudanalyzer
4https://github.com/COMSYS/CloudAnalyzer

3.3. CloudAnalyzer: Uncovering the Cloud Usage of Mobile Apps 69

the most influential services for each class. We provide the full list of the 55 cloud
services that we selected in Table 3.3.

Cloud Infrastructure (CI). Developers of mobile apps use cloud infrastructure (i.e.,
computing and storage resources) to operate their apps’ backends (instead of using
own servers). In our work, we consider the most important infrastructure providers
as identified by Canalys’ revenue analysis [Can17] and Skyhigh’s study of application
deployment [Sky16]. The services covered by these studies account for a market share
of 68.7 % respectively 85.7 %. Both studies agree that Amazon and Microsoft jointly
dominate the market, with a combined market share of more than 50 %.

Content Delivery Networks (CDN). To reliably, scalably, and timely deliver static
content, content delivery networks (CDNs) rely on globally distributed infrastruc-
ture. They can either be realized on top of cloud infrastructure or built on dedicated
infrastructure. We analyze all CDNs that have a market share of more than 1 %
in Datanyze’s measurements of 1 million popular websites [Dat17a]. These mea-
surements identify Amazon CloudFront as the most widely used CDN, followed by
KeyCDN, Cloudflare, and Akamai. Together, the CDN services in our analysis have
a market share of more than 90 %.

Reporting and Analytics (R&A). To support app developers with statistics on
errors and app usage, reporting services track errors (e.g., crashes) of apps while
analytics services gather statistics on the usage of apps (ranging from gathering user
statistics to tracking user interaction). We cover all services behind the reporting
and analytics libraries with more than 1 % of installations according to AppBrain’s
measurements [App17b, App17c]. Libraries that do not operate own cloud services
are excluded from our analysis (this is the case, e.g., for ACRA). The most influential
crash reporting service is Crashlytics with 11.6 % of installations, while Flurry is the
leading analytics service with 16.9 % of installations.

Mobile Advertisement (MA). App developers often rely on mobile advertisement
services to monetize their apps [SDW12]. These services are usually realized on
cloud infrastructure and/or CDNs. In our work, we include the services of ad-
vertisement network libraries with more than 1 % of installations in AppBrain’s
statistics [App17a, App17e]. In addition, we incorporate the advertisement compa-
nies with the highest traffic share as derived from a measurement study of Pujol et
al. [PHF15], i.e., AppNexus and Criteo.

Consumer Services (CS). Services directly addressing and interacting with con-
sumers, e.g., social networks or communication and video platforms, often rely on
cloud infrastructure and CDNs. Such consumer services (e.g., Facebook and Twit-
ter) can often be integrated into apps through an SDK. To capture this effect, we
include the social network libraries with more than 1 % of installations according to
AppBrain [App17d] into our analysis. Furthermore, we cover the services with the
highest amount of mobile traffic in North America according to Sandvine [San16a].
Finally, we incorporate the 20 most prominent consumer services ranging from Face-
book over Flickr to Evernote as identified by Skyhigh [Sky16].

70 3. Raising Awareness for Cloud Usage

Service Source(s) CI CDN R&A MA CS Additional Brand Names

AdColony [App17a] [App17e] �
Adjust [App17a] [App17b] � �
Akamai [Dat17a] �
Alibaba [Can17] � � � � Umeng

Amazon [App17a] [Can17]
[Sky16] � � � � � Amazon Mobile Ads, Amazon S3, Amazon

Web Services (AWS), Cloudfront, Twitch
Appboy [App17d] � �
Apple [San16a] � iCloud, iTunes
AppLovin [App17a] � �
Appnext [App17a] �
AppNexus [PHF15] �
AppsFlyer [App17a] [App17b] � �
Apteligent [App17c] � Crittercism
Chartboost [App17a] [App17e] �
Cloudflare [Dat17a] �
comScore [App17b] � ScorecardResearch
Criteo [PHF15] �
Dropbox [Sky16] �
Evernote [Sky16] �
Facebook [App17d] [San16a]

[Sky16] � � Atlas, Instagram, Facebook Messenger,
WhatsApp

Fastly [Dat17a] �
GitHub [Sky16] �
Google

[App17a] [App17c]
[App17d] [Can17]
[San16a] [Sky16]

� � � � � AdMob, Crashlytics, DoubleClick, Fabric,
Gmail, Google Analytics, YouTube

imgur [Sky16] �
Incapsula [Dat17a] �
InMobi [App17a] �
KeyCDN [Dat17a] �
Kochava [App17a] [App17b] � �
Leadbolt [App17a] �
LinkedIn [Sky16] �
Localytics [App17b] �
Microsoft [App17c] [Can17]

[Sky16] � � � � � Bing, HockeyApp, Microsoft Azure, Office,
OneDrive, Outlook, Skype

Mixpanel [App17b] �
Netflix [San16a] �
Oracle [Can17] � �
Pinterest [Sky16] �
Rackspace [Dat17a] [Sky16] � �
RNTSMedia [App17a] [App17d] � � Fyber, HeyZap
Smaato [App17a] �
Snap [San16a] � SnapChat
SoftLayer [Can17] [Sky16] � � �
SoundCloud [Sky16] �
StackPath [Dat17a] � Highwinds, MaxCDN

StartApp [App17a] [App17d]
[App17e] � �

StumbleUpon [Sky16] �
Supersonic [App17a] � � IronSource, mobileCore, StreamRail
Tapjoy [App17a] �
Tune [App17a] [App17b] � � MobileAppTracking
Twitter [App17a] [App17d] � � MoPub, Vine
Unity [App17a] [App17e] � � Applifier

Verizon [App17a] [App17e]
[Dat17a] [Sky16] � � � � � AOL, EdgeCast, Flickr, Flurry, Millennial

Media, Nexage, Tumblr, Yahoo
Vimeo [Sky16] �
VK [App17d] �
Vungle [App17a] [App17e] �
WeChat [App17d] �
Yandex [App17b] [App17c] � �

Table 3.3 Our derived set of 55 cloud services covers the different classes of mobile cloud
services. We use � to denote representative services for each class of mobile cloud services,
while � denotes less prominent services for this class.

3.3. CloudAnalyzer: Uncovering the Cloud Usage of Mobile Apps 71

3.3.1.2 Privacy Risks of Mobile Cloud Services

When considering the landscape of mobile cloud services, we observe that the chal-
lenge of protecting privacy is more complex and important for cloud-based app com-
pared to traditional deployments [PHW17]. First, smartphones are equipped with
a large number of sensors, facilitating detailed monitoring and tracking [GCEC12].
For example, by reading the GPS sensor, an app can accurately derive and track
the position of the smartphone user. Second, users interact with their smartphones
throughout the day, leading to a growing amount of sensitive information and meta-
data [GCEC12]. Thus, smartphones increasingly cover important aspects of private
life and protecting against the leakage of private information is important for a wide
range of users. When outsourcing potentially sensitive data to cloud services, these
privacy risks further amplify—mainly due to the centrality, technical complexity,
non-transparency, and opaque legislation of cloud computing (cf. Section 1.1.3).

Modern computing power—as it is made readily available by cloud services in abun-
dance today—allows processing large amounts of information collected from smart-
phones near real-time, e.g., multiple sources of information can be combined to create
complex profiles of individual users [EGH+14]. Thus, a messenger app can not only
keep track of with whom its users are communicating but additionally rely on GPS
information to also derive from where users are communicating [PHW17]. Most no-
tably, since more and more tasks—ranging from shopping over maintaining the cal-
endar to the tracking of fitness and health—are realized on smartphones [EGH+14],
private information stored on, processed by, and sensed from smartphones becomes
evermore valuable and hence requires protection. Such valuable information is
one key reason for developers of smartphone apps to ignore the privacy of their
users [PFNW12]. Because of the huge competition in the market for smartphone
apps, apps are often offered for free and monetized through advertisements [SDW12].
Here, access to personal information allows app developers to increase their revenue
since advertisers pay more for personalized advertisement instead of presenting the
same advertisement to every user [PFNW12].

As a result of these privacy risks, users perceive a loss of control over their data when
their sensitive data is sent to cloud services (cf. Section 1.1.3). Hence, providing users
with the information required to quantify this loss of control as a foundation to take
appropriate countermeasures is an important challenge.

3.3.1.3 Related Work

Different lines of research provide valuable input for our goal to uncover cloud usage
of apps. We classify related work into approaches studying (i) mobile network traffic,
(ii) cloud traffic, (iii) mobile advertising, and (iv) data flow tracking.

Mobile Network Traffic. Xu et al. [XEG+11] study the usage behavior of apps
in a cellular network. ProfileDroid [WGNF12] studies Android apps to understand
their network behavior. Freudiger [Fre15] studies the WiFi probe requests of mo-
bile devices to quantify resulting location privacy risks. AntMonitor [LVL+15] and
Haystack [RVS+16] realize mobile measurement platforms that enable researchers to

72 3. Raising Awareness for Cloud Usage

investigate the network usage of apps at large scales. Envisioned use cases of these
platforms include network classification and the detection of privacy leaks. With
the goal to detect leaked private data, PrivacyGuard [SH15] and ReCon [RRL+16]
intercept network traffic of apps. They show that it is possible to detect the leakage
of private information such as a device’s IMEI (globally unique identifier of a phone)
or location purely by observing network traffic. Ferreira et al. [FKB+15] study the
network behavior of apps to differentiate between (in)secure connections and the
location of communication endpoints.

These works focus on the patterns and content of apps’ network communication (and
partially on resulting privacy risks). They provide a solid foundation for our work
since they derive an understanding of the network-level behavior of mobile apps
and offer mechanisms to detect leaked private data in network traffic. In contrast
to our work, these works neglect the added privacy risks of the complex and non-
transparent interweaving of mobile apps with cloud services common today.

Cloud Traffic. Bermudez et al. [BMM+12] identify DNS responses as viable input to
identify cloud services. Subsequently, they detect network traffic flowing to Amazon
Web Services [BTMM13]. Drago et al. [DMM+12] rely on DNS and transport layer
security (TLS) packets to study cloud storage systems based on passive network
observations. To understand if and how web services are realized on top of cloud
infrastructure, He et al. [HFW+13] perform DNS probing for popular web services.
These works perform large-scale measurements to understand the anatomy of cloud
services and their methodology provides valuable input to detecting cloud usage
on smartphones. However, these approaches do not consider the privacy risks of
smartphones communicating with cloud services, which is our main focus.

Mobile Advertising. Vallina-Rodriguez et al. [VSF+12] study mobile advertising
based on network traffic observed within the network of a mobile carrier. Fo-
cusing on advertisement libraries on Android, Book et al. [BPW13] analyze the
use of permissions for mobile advertising. From a different perspective, Chen et
al. [CUKB14] investigate the privacy risks of mobile analytics services. Seneviratne
et al. [SKS15] focus on the privacy risks of paid apps. Complementing these works,
Vallina-Rodriguez et al. [VSR+16] study mobile advertising and tracking based on
network traces of volunteers. Finally, Brookman et al. [BRAY17] measure the ca-
pability of advertisers to link users across different devices. These works highlight
privacy risks of forwarding data to advertising services. However, mobile advertising
is only one part of the mobile cloud landscape and privacy risks further exacerbate
when looking at the complete mobile cloud landscape.

Data Flow Tracking. Tracking the flow of data within smartphone apps allows
to detect the leakage of sensitive data to third parties, even if apps try to obfus-
cate that they are sending out sensitive data. AndroidLeaks [GCEC12] and Flow-
Droid [ARF+14] are static flow tracking systems that are used ahead of time to detect
potential leaks of sensitive information by covering all possible execution paths of an
app. In contrast, dynamic flow tracking systems, such as TaintDroid [EGH+14] and
TaintART [SWL16], track data flows during execution of an app to identify actual
data leakage that occurs while executing an app. One challenge of data flow tracking
is to identify whether an identified data flow is benign or constitutes a privacy risk.

3.3. CloudAnalyzer: Uncovering the Cloud Usage of Mobile Apps 73

To this end, AppIntent [YYZ+13] identifies data flows that have not been triggered
by the user and marks those as critical.

Mobile operating systems today counter privacy risks by measures ranging from
access control to sandboxing [Ele14, ADD+14]. These protect against malicious
apps, but do not prevent privacy invasive apps from exploiting granted permis-
sions. Hence, users’ privacy is insufficiently protected [SSY+16], especially since
users remain oblivious of their exposure to a plethora of cloud services. Related
work that addresses this challenge primarily focuses on detecting which private con-
tent is leaked from smartphones [YYZ+13,EGH+14,SWL16]. In contrast, we study
the privacy risks resulting from the destination of leaked content, especially in the
context of cloud computing.

3.3.2 Detecting Cloud Usage of Apps

Given the privacy risks when data is sent from smartphones to the cloud, users must
be empowered to effectively assess these risks to make an informed decision about
which apps to use or not. To this end, users need detailed information about the
quality and extent of cloud exposure induced by apps. However, existing approaches
today primarily focus on detecting the leakage of sensitive information, irrespective
of where data is communicated to. Additionally, cloud exposure of users through
their apps is highly individual, depending on the utilized apps and users’ behav-
ior when interacting with these apps. Hence, users are in need of an individual
assessment of the privacy risks resulting from the cloud usage of their apps.

To achieve this goal, we present CloudAnalyzer, our transparency approach that
uncovers the cloud usage of smartphone apps by passively observing network traf-
fic directly on users’ devices. Consequently, we neatly complement existing work,
especially on data flow tracking, since we enable the attribution of privacy leaks
to responsible cloud services. This attribution empowers users to adequately assess
their individual privacy risks and take appropriate countermeasures, e.g., uninstall
a certain app or change their usage behavior.

In the following, we first describe the overall architecture of CloudAnalyzer. We
then present our methodology for dissecting network traffic to detect cloud usage
and describe how we realize CloudAnalyzer on off-the-shelf Android devices.

3.3.2.1 System Overview

CloudAnalyzer operates on network traffic of smartphone apps to detect communi-
cation with cloud services. We realize all functionality for uncovering cloud usage
solely within the control of the user, i.e., directly on her device. Since network traf-
fic itself is extremely sensitive, processing it outside users’ control would strongly
contradict our goal of improving user privacy.

Our system for uncovering cloud usage of smartphone apps, CloudAnalyzer, operates
as shown in Figure 3.11. Whenever an app uses one of the communication interfaces

74 3. Raising Awareness for Cloud Usage

Figure 3.11 To uncover cloud usage, CloudAnalyzer analyzes network traffic created by apps
directly on users’ smartphones to detect communication with cloud services.

(cellular or WiFi) of the smartphone to contact an Internet service, CloudAnalyzer
locally obtains a copy of the network traffic. Subsequently, CloudAnalyzer dissects
the captured traffic to identify contacted cloud services based on properties of net-
work traffic. Based on this information on contacted cloud services, CloudAnalyzer
attributes the complete communication flow to one or multiple identified cloud ser-
vices. CloudAnalyzer collects aggregated statistics on the number of network packets
and the amount of traffic that has been sent to and received from a specific cloud
service, thereby differentiating between the direction of communication, encrypted
and unencrypted communication, user-initiated and background traffic, as well as
the used communication interface (cellular or WiFi).

3.3.2.2 Dissecting Traffic to Detect Cloud Usage

At the core of CloudAnalyzer sits our methodology to detect cloud usage based on
network traffic. As the foundation of this methodology, we comprehensively analyze
the communication behavior of smartphone apps to derive different approaches for
reliably identifying contacted cloud services.

IP Addresses. IP addresses are identifiers assigned to each networked computer
[Pos81] and hence also to each server that is used to realize cloud services. Hence,
IP addresses can be used to identify the operator of the infrastructure a service is
realized on (cloud infrastructure or CDN, cf. Section 3.3.1.1). To determine that a
contacted server is operated by a cloud service, we rely on information supplied by
cloud providers: Many cloud services (e.g., Amazon, Microsoft, Google, SoftLayer)
make their IP addresses public, e.g., to enable customers to configure firewalls (cf.
Section 3.2.2.1). Often, such published information contains a (textual) description
of the location of the data center, enabling us to also identify the corresponding
jurisdiction. While IP addresses often allow us to detect infrastructure services, we
additionally have to analyze application layer protocols to also detect services that
fail to publish their IP addresses as well as services realized at higher layers, i.e., on
top of cloud infrastructure.

DNS Responses. The domain name system (DNS) translates (human readable)
domain names to IP addresses [Moc87]. Whenever a smartphone app requests a re-
source from a specific domain name, the Android system transparently issues a DNS
request to translate this domain name to an IP address. By observing subsequent

3.3. CloudAnalyzer: Uncovering the Cloud Usage of Mobile Apps 75

DNS responses from a DNS name server, we derive the actual contacted service(s)
[BMM+12,DMM+12]. We mark all subsequent communication with this IP address
as belonging to the identified cloud service. Using this approach, we are even able
to identify multiple services in the case of indirect cloud usage. Furthermore, some
cloud services (e.g., Amazon) use domain names that contain information about the
data center location, easing the detection of the applicable jurisdiction for data sent
to this cloud service.

Server Name Indication. With the increasing use of encryption, server name in-
dication (SNI) enables operators to still serve multiple domain names from one IP
address. Support for SNI is available for the widely deployed TLS protocol [Eas11]
and the evolving QUIC protocol [LC16]. Since clients send the SNI in plaintext,
we can observe this information and utilize it, similar to DNS responses, to identify
contacted cloud services.

TLS Certificates. When using TLS encrypted connections, servers have to authen-
ticate themselves to clients using a TLS certificate [DR08]. This certificate typically
identifies the institution operating a service. To establish trust into certificates,
they have to be validated by a trusted certificate authority. Hence, the informa-
tion in TLS certificates, especially domain names and the owner of the certificate,
constitutes an especially reliable source for identifying cloud services.

Detecting Cloud Usage for Traffic Flows

In CloudAnalyzer, we use the above approaches to detect cloud exposure for traffic
flows as follows. Whenever one of the above approaches detects a cloud service,
we mark any future packets of the same traffic flow as being exposed to this cloud
service as well. Strictly working on traffic flows prevents false classification that
might result from more lenient approaches, such as analysis of traffic patterns. Most
notably, the combination the above approaches also enables the detection of indirect
cloud usage, i.e., one cloud service realized on top of another. In this case, we assign
one traffic flow to more than one cloud service and use the most specific information
available on these different cloud services, e.g., when assigning data center locations.

Detecting Usage of Specific Cloud Services

To apply the above approaches to detect specific cloud services, we need to create
patterns for each cloud service. For example, we need to know which IP addresses
a cloud service uses or how a cloud service’s TLS certificate looks like. To this end,
we researched these patterns for our 55 representative cloud services (cf. Section
3.3.1.1). Here, we relied on information provided by cloud services as well as other
public information (e.g., filter lists for advertisement). Subsequently, we verified
that our selection of cloud services and detection patterns is indeed representative
by checking IP addresses, DNS and SNI domain names, as well as TLS certificates
for a random subset of our measurements of the most used apps (cf. Section 3.3.3.3).

Our approach of creating patterns for representative cloud services might not nec-
essarily detect all cloud services. However, given our goal to support users in em-

76 3. Raising Awareness for Cloud Usage

Figure 3.12 CloudAnalyzer accesses network packets by locally imitating a VPN using An-
droid’s VPNService.

powering their privacy, we strive for correctness over completeness. Our rationale
is to keep users clear of incorrect information which might result from probabilistic
approaches, such as the topological analysis of autonomous systems [FBL15] or IP
geolocation databases [PUK+11]. Instead, the information provided by CloudAna-
lyzer constitutes a lower bound for the usage of cloud services. In return, we accept
that we might not be able to detect cloud exposure to a few less important and
seldom used cloud services. Additionally, cloud services might deliberately try to
obfuscate their network communication. However, during our tests of CloudAna-
lyzer, we observed only a single attempt to obfuscate a mobile advertising service.

3.3.2.3 Integrating CloudAnalyzer into Android

The core idea of CloudAnalyzer is to detect the usage of cloud services based on
network traffic. Since network traffic itself is of sensitive nature, we consider it
imperative to realize CloudAnalyzer directly on users’ devices. However, mobile
operating systems such as Android, in contrast to traditional operating systems,
lack an interface to access network traffic without system modification (i.e., rooting
the device or installing custom firmware). Since we mostly target non technically-
minded users, we cannot dictate modifications to the operating systems in contrast
to related work [EGH+14,SWL16]. Instead, we aim at a solution that enables users
to uncover their cloud exposure simply by installing an app through well-established
channels (e.g., using the Google Play store).

To achieve this goal, we use an indirect path to access network traffic on unmodified
Android devices: We realize an imitated virtual private network (VPN) to gain
access to the device’s network traffic using the VPNService of the Android SDK
[RVS+16, LVL+15, SH15]. As shown in Figure 3.12, the VPNService enables us to
create a tun interface that redirects all network traffic of the Android device into
our imitated VPN. The imitated VPN receives raw IP packets and performs two
tasks: (i) it creates a copy of each received network packet which is then forwarded
to CloudAnalyzer for further processing and (ii) it forwards the raw IP packets to
their original destination.

The latter proves technically difficult since Android prohibits the creation of raw
sockets. Hence, we implement the essential parts of a Layer 3 and 4 network stack
to forward data from the tun interface over a normal Java socket to an Internet host.
This approach includes memorizing the state of all open connections to be able to
re-translate payload received on a socket to corresponding IP packets to send them

3.3. CloudAnalyzer: Uncovering the Cloud Usage of Mobile Apps 77

back to the application over the tun interface. Related work shows that this can be
realized at modest throughput and energy costs [RVS+16,LVL+15,SH15], which we
verified through independent measurements.
Besides protecting privacy, capturing and analyzing network traffic directly on users’
devices gives us an additional advantage: It allows correlating network packets to
the application they originate from. To this end, we track connections by extracting
the user ID of the app that started a specific network flow from the kernel’s proc
directory. Subsequently, we translate this user ID to the package name of the app
using Android’s PackageManager API.
CloudAnalyzer’s way of utilizing Android’s VPNService prevents users from using
an actual VPN connection. This limitation can be circumvented by integrating
CloudAnalyzer either into the VPN client or server. On a different perspective,
CloudAnalyzer asks for permission to access sensitive network traffic and hence
users need to trust CloudAnalyzer not to misuse this privilege. This requirement
holds for all privacy enhancing technologies working on network traffic and we are
convinced that increased privacy outweighs the required trust. Furthermore, unlike
related work [RVS+16,SH15], we do not require users to install a Certificate Author-
ity (CA) certificate to perform man-in-the-middle analyses. Hence, CloudAnalyzer
intentionally remains oblivious of the content of encrypted sensitive communication.
In summary, by using Android’s VPNService and keeping track of connections, we
can observe network traffic on off-the-shelf Android devices (Version 4.4 and newer)
without the need for system modifications. Furthermore and in contrast to in-
network traffic monitoring, we are able to associate network packets to the app they
originate from. Hence, we can use CloudAnalyzer to check the network traffic of
individual apps for communication with cloud services.

3.3.3 Real-World Cloud Usage

We now set out to uncover the cloud usage of mobile apps using CloudAnalyzer.
To this end, we first discuss our observations derived from running CloudAnalyzer
on devices of volunteers. Subsequently, we report on additional measurements of
popular mobile websites and the most used apps in multiple countries to highlight
different aspects of cloud usage at larger scales.

3.3.3.1 Cloud Usage on User Devices

We begin our study by analyzing the cloud usage of actual users on their mobile
devices. To this end, volunteers installed CloudAnalyzer on 29 devices (it is possible
that volunteers participated with more than one device each) and collected statistics
on the cloud exposure caused by their apps over the course of 19 days.

Study Design

We advertised our study using mailing lists and personal contacts, but did not offer
monetary incentives for participating in our study. People were already motivated to

78 3. Raising Awareness for Cloud Usage

participate through the opportunity of gaining interesting insights into their expo-
sure to cloud services. Study participants could at any time pause CloudAnalyzer’s
traffic analysis or examine their cloud usage through a graphical user interface (GUI).
As a result, volunteers could have changed their usage behavior based on the infor-
mation provided by CloudAnalyzer. However, since our focus in this work lies on
untangling the mobile cloud landscape, our experiments were not explicitly designed
to capture these effects. Still, one volunteer contacted us to report on uninstalling
an app based on the information provided by CloudAnalyzer, and we plan to further
study such aspects in future work.

We collected aggregated statistics on cloud usage detected by CloudAnalyzer as well
as general statistics, such as the amount of time CloudAnalyzer was running and
the total amount of network traffic (serving as a baseline). For our analysis, we only
consider data from days where CloudAnalyzer was running for at least 20 hours (to
prevent partial measurements). In total, we were able to collect data for 347 days
of mobile device usage covering 383 apps (we only collect information on apps that
produce network traffic).

Privacy and Ethical Considerations

As the goal of CloudAnalyzer is to empower users to execute their right to privacy, we
designed our study such that the risk of (inadvertently) harming the privacy of our
volunteers is minimized. To this end, we followed the principles of privacy by design
[Cav11] and ethical research guidelines [DK12]. We are only interested in technical
usage characteristics of cloud services, not in user behavior. Hence, we neither
collected personally identifiable information nor other statistics on our volunteers.
In fact, we do not even know who participated in our study (unless volunteers
actively disclosed their participation). We strictly minimized the collection of data
to the amount necessary and aggregated all statistics directly on the volunteers’
devices at a granularity of one day (to minimize the risk of de-anonymizing users
based on temporal information).

Users were educated about the extent and purpose of data collection and had to
explicitly agree to these conditions. We obliged ourselves to not share collected data
with third parties. Furthermore, we gave users the possibility to exclude specific
apps from the analysis. Finally, we offered them the option to disable automatic
uploads of their statistics to manually review collected information before sending
it to our measurement server.

Overall Cloud Usage

We begin our study by investigating the overall characteristics of cloud usage caused
by the apps of our volunteers. In Figure 3.13, we show the complementary cumulative
distribution function (1−CDF) for the number of used cloud services per app across
all devices. On average, each app connects to 3.2 cloud services and 89.8 % of all apps
contact cloud services, highlighting the potential privacy risks of cloud computing.
Naturally, web browsers contact many cloud services (e.g., Chrome with 37 services)

3.3. CloudAnalyzer: Uncovering the Cloud Usage of Mobile Apps 79

Figure 3.13 Number of cloud services ac-
cessed per app on user devices.

Figure 3.14 Fraction of cloud traffic of indi-
vidual apps on user devices.

Figure 3.15 The fraction of cloud usage varies across the different dimensions of network
traffic on user devices (solid line = overall fraction of cloud usage).

as users can visit a wide range of different websites that can rely on cloud services, but
also less obvious candidates, e.g., the fitness tracking apps com.withings.wiscale2
(12) and com.myfitnesspal.android (11), contact a large number of cloud services.

When looking at the fraction of cloud traffic per app in Figure 3.14, we make an even
stronger observation. While 89.8 % of apps produce cloud traffic, 53.8 % of apps send
95 % or more of their traffic to cloud services. Notably, 35.5 % of apps exclusively
communicate with cloud services. These numbers show that cloud entanglement is
a real problem, concerning a majority of apps and often leading to the complete
exposure of apps’ communication to cloud services.

Different Dimensions of Cloud Traffic

Cloud traffic can be generated in various ways, e.g., directly triggered by users
through interaction with an app or automatically by background processes, leading
to different privacy risks. We study the different dimensions of cloud traffic in
Figure 3.15, where we compare the fraction of traffic to and from cloud services
along different dimensions of network traffic to the overall fraction of cloud usage
(solid line). We observe a higher fraction of cloud usage in uploaded (81.4 %) than

80 3. Raising Awareness for Cloud Usage

Service Traffic Apps

Google 34.66 % 54.57 %
Facebook 9.71 % 24.80 %
Amazon 8.76 % 65.27 %
Akamai 5.92 % 27.94 %
Fastly 5.54 % 13.32 %
imgur 3.04 % 4.18 %
Cloudflare 1.27 % 12.27 %
Snap 1.07 % 1.04 %
Twitter 0.60 % 9.14 %
Verizon 0.60 % 16.45 %

Service Traffic Apps

StackPath 0.45 % 7.57 %
Microsoft 0.25 % 8.62 %
Chartboost 0.19 % 0.26 %
Dropbox 0.10 % 1.31 %
SoundCloud 0.07 % 2.87 %
GitHub 0.05 % 2.87 %
AppNexus 0.04 % 7.57 %
Criteo 0.04 % 5.74 %
Netflix 0.03 % 0.52 %
Tapjoy 0.03 % 0.26 %

Table 3.4 Fraction of overall traffic and app penetration for the 20 cloud services that account
for the most traffic on user devices.

in downloaded traffic (67.9 %). These numbers indicate that a large fraction of
data, potentially containing sensitive information, that leaves a smartphone is sent
to cloud services. The higher cloud usage of 76.4 % for background (not directly
triggered by users) compared to 67.3 % for foreground traffic (users interacting with
the app) likely corresponds to synchronization tasks, e.g., updates of apps, typically
happening in the background5. We do not observe a large difference in the cloud
usage of traffic sent over cellular compared to WiFi networks. Furthermore, we
observe that cloud usage is more prevalent for encrypted (76.0 %) than for plaintext
traffic (55.8 %). While this observation most likely indicates that cloud services are
faster in adopting security technology, it could also mean that data sent to cloud
services is of more sensitive nature and thus requires encryption.

Most Prevalent Cloud Services. Given the overall high fraction of cloud traffic, we
take a closer look at the individual cloud services that cause this traffic. In Table
3.4, we list the 20 cloud services with the highest fraction of cloud traffic across all
devices. We witness that several providers receive a large portion of traffic generated
by the apps on the mobile devices of our volunteers. Most notably, Google (also the
developer of Android) accounts for 34.7 % of traffic and is accessed from more than
half of all apps. While Amazon accounts for significantly less traffic, Amazon is
contacted by nearly two-thirds of all apps. These numbers highlight that few cloud
services have a high market penetration, both in terms of traffic and numbers of
apps. This distribution can be especially problematic considering the imminent
privacy risks resulting from a centralized cloud landscape (cf. Section 1.1.3).

Individual Perspective on Cloud Usage

To showcase that cloud entanglement has an individual component, we evaluate
how users’ selection of and interaction with apps influence their cloud exposure. To
this end, we study the per-device cloud traffic for the 20 most installed apps on our
volunteers’ devices in Figure 3.16. Here, we exclude system apps, such as keyboards

5Differentiating between foreground and background traffic on Android is not straightforward.
We use the broadcasts ACTION_SCREEN_ON and ACTION_SCREEN_OFF which (despite the slightly mis-
leading name) indicate whether the device is sleeping (and hence non-interactive) or not [And18a].

3.3. CloudAnalyzer: Uncovering the Cloud Usage of Mobile Apps 81

Figure 3.16 While most apps cause the same cloud entanglement across devices, certain apps’
cloud traffic highly varies across different devices (varying shading for different devices).

or contact synchronization to not clutter the results. For each combination of device
and app, we provide the fraction of cloud traffic (“–” denotes that an app did not
produce any traffic on this device, likely because it was not installed).

Comparing the apps used on different devices, we notice that Devices 20, 23, and
25 use little to none of the 20 most popular apps. When looking at the apps used
on these devices in more detail, we observe that these devices lack (the full stack
of) Google apps, e.g., because of using custom firmware. For these devices, we
directly witness a lower fraction of cloud usage. However, Device 25 is a notable
exception which seems to be running Amazon’s adaptation of Android, leading to a
cloud usage comparable to the cloud usage of devices with installed Google services.
When looking at the cloud traffic for the same app across different devices, we
observe two classes of apps: The first class contains a large number of apps where
the fraction of cloud traffic is the same across all devices. Among the 20 most used
apps, this class covers apps that nearly exclusively use cloud services. Nevertheless,
we also found less common examples that produce no cloud traffic at all (e.g., the
client for the self-hosted Nextcloud or banking apps).

For the second class, we observe apps where the fraction of cloud traffic for the
same app heavily deviates across devices, e.g., for web browsers and email clients.
Hence, we discovered apps where cloud functionality is either built-in or not and
others, where user behavior influences exposure to cloud services. For apps where
cloud usage does not depend on user behavior, users can only decide to stop using a
specific app if they deem its cloud usage too excessive. In contrast, for apps where
cloud usage depends on user behavior, users might be able to change their behavior
to also change cloud usage, e.g., by switching to a non-cloud hosted email provider.

3.3.3.2 Cloud Usage of Mobile Websites

To further understand the impact of varying user behavior on cloud usage, we now
focus on the cloud exposure caused by visiting mobile websites. As we have seen in

82 3. Raising Awareness for Cloud Usage

Figure 3.17 Number of cloud services ac-
cessed per popular website.

Figure 3.18 Fraction of cloud traffic pro-
duced by popular websites.

our previous measurements, web browsers are an important group of apps for which
user behavior has a considerable influence on the level of cloud exposure. To gain a
deeper understanding of this phenomenon, we analyze the cloud usage of the most
popular websites for the cloud exposure they cause.

Measurement Setup

We mimic the mobile Chrome browser of a Google Nexus 5 smartphone and instruct
it to visit the mobile versions of the 5000 most popular websites (measured by
Alexa [Ale16]). We wait for each website to fully load and scroll to the bottom of
the page to also trigger subsequent traffic resulting from embedded scripts.

Overall Cloud Usage

In Figure 3.17, we show the number of cloud services per mobile website. We observe
that 92.8 % of the most popular websites use cloud services and on average each of
the websites exposes their visitors to 4.8 cloud services. In the extreme case, fetching
the mobile version of rollingstone.com leads to connections with 16 cloud services.

Additionally, we study the resulting cloud traffic of mobile websites in Figure 3.18.
While 11.1 % of mobile websites are almost completely realized using cloud services
(cloud traffic ≥ 99 %), we observe that the fraction of cloud traffic is nearly evenly
distributed among websites, leading to a huge variety in the exposure to cloud ser-
vices. Hence, which websites a user frequently visits highly influence her individual
exposure to cloud services.

Most Prevalent Cloud Services. We now identify the cloud services that are re-
sponsible for the most cloud usage when visiting popular mobile websites. To this
end, we present the 20 cloud services with the highest traffic from mobile websites
in Table 3.5. In contrast to the most prevalent cloud services on mobile devices in
general (cf. Section 3.3.3.1), we observe that Google has a significantly lower traffic
share while CDNs play a more important role. Even though most cloud services
do not account for large fractions of traffic generated by mobile websites, they are

3.3. CloudAnalyzer: Uncovering the Cloud Usage of Mobile Apps 83

Service Traffic Sites

Akamai 13.74 % 43.24 %
Google 12.02 % 84.50 %
Amazon 10.33 % 76.82 %
Cloudflare 8.97 % 48.76 %
Fastly 2.91 % 41.08 %
Verizon 2.12 % 24.28 %
Facebook 1.56 % 47.86 %
StackPath 1.16 % 13.38 %
Microsoft 0.59 % 13.78 %
Twitter 0.53 % 10.46 %

Service Traffic Sites

Incapsula 0.47 % 3.26 %
Alibaba 0.46 % 3.58 %
Yandex 0.36 % 3.18 %
AppNexus 0.33 % 33.02 %
Vimeo 0.15 % 0.48 %
LinkedIn 0.10 % 2.28 %
Oracle 0.09 % 6.36 %
Criteo 0.09 % 9.34 %
GitHub 0.08 % 2.32 %
Rackspace 0.06 % 0.42 %

Table 3.5 Fraction of overall traffic and website penetration for the 20 cloud services (we also
treat CDNs as cloud services) that account for the most traffic on mobile websites.

embedded in a large number of websites (e.g., AppNexus accounts for only 0.3 % of
traffic but is embedded by 33.0 % of websites). Most notably, Google and Amazon
are present on 84.5 % respectively 76.8 % of mobile websites. This high penetration
most likely results from small scripts, e.g., for Google Analytics, that are embedded
in a large number of mobile websites. As a result, these services have the potential
to create detailed tracking profiles of users [RKW12].

3.3.3.3 Cloud Usage of Popular Apps

So far, we have concentrated our efforts on studying cloud exposure caused by in-
teraction with apps. However, to thoroughly compare the cloud exposure caused
by different apps and reveal the influence of differing locations on cloud usage, we
now test apps under comparable conditions at large scale. We analyze the 500 most
downloaded free apps in Google Play [Goo16] for the five countries with the highest
download numbers (Brazil, India, Mexico, Russia, and USA [App15]).

Measurement Setup

We run our measurements on real hardware to create a realistic environment and
prevent apps from changing their behavior due to detected virtualization [MFB+15].
To this end, we connect five Nexus 7 (Model 2013) devices running Android 6.0.1
each to a dedicated wireless router. Each router operates a VPN connection to a
server in one of the five countries under study, similar to the setup proposed by
MATAdOR [SWZC16]. However, we use commercial VPN endpoints from VPNSe-
cure instead of PlanetLab nodes.

To account for the effect of different VPN speeds, we fix network bandwidth to
2 Mbit/s. We execute each app for 1 minute and provide random user input using
Android’s Application Exerciser Monkey [And18b], as apps’ communication can be
based on user input. We repeat our measurements in parallel for all five countries
on 10 different days. In total, we study 1475 different apps (one app can be among
the 500 most popular apps in more than one country).

84 3. Raising Awareness for Cloud Usage

Figure 3.19 On average, each of the most popular apps uses 4.3 cloud services. Apps in the
USA contact slightly more cloud services, while apps in India and Russia use less cloud services.

Figure 3.20 Traffic resulting from the most popular apps results in a slightly deviating cloud
usage for the different countries (solid line = overall fraction of cloud usage).

Overall Cloud Usage

In Figure 3.19, we show the number of utilized cloud services per app for the five dif-
ferent countries (across all 10 days). Notably, 90.0 % (India) to 94.8 % (USA) of the
studied apps connect to at least one cloud service. On average, each app establishes
a connection to 4.3 cloud services (3.8 in India to 4.9 in the USA). Each of these
contacted cloud service constitutes a potential privacy risk (cf. Section 3.3.1.2). The
app with the highest number of contacted services, com.fingersoft.hillclimb, a
game with 7.9 million installs, uses 18 cloud services when launched in Russia.

Given these already high numbers, we now set out to quantify the fraction of traffic
flowing to cloud services. For each of the five countries, Figure 3.20 contains the
average fraction of cloud traffic for upload, download, and total traffic over all apps.
The total fraction of cloud traffic ranges from 70.4 % in Russia to 80.3 % in the
USA, which is in the order of those numbers we observed for foreground and cellular
traffic on real devices in the wild (cf. Section 3.3.3.1). Notably, here we observe
a higher fraction of cloud traffic for downloads compared to apps on real devices,
likely because a large number of free apps download advertisements from cloud
servers. These numbers highlight that our measurement setup is well suited to
study the behavior of apps during their interactive usage, as the observed results
are sufficiently similar to the results observed on real devices (cf. Section 3.3.3.1).

3.3. CloudAnalyzer: Uncovering the Cloud Usage of Mobile Apps 85

Service Traffic Apps

Google 24.38 % 80.00 %
Amazon 20.90 % 80.27 %
Akamai 13.26 % 56.34 %
Facebook 5.84 % 50.98 %
Verizon 4.76 % 38.58 %
Unity 3.88 % 17.49 %
Chartboost 2.72 % 10.17 %
Fastly 2.12 % 17.69 %
StackPath 1.93 % 16.95 %
AppLovin 1.81 % 7.59 %

Service Traffic Apps

Cloudflare 1.38 % 18.58 %
Vungle 1.34 % 5.90 %
Microsoft 0.99 % 9.36 %
AppsFlyer 0.92 % 18.85 %
Yandex 0.71 % 3.86 %
Twitter 0.68 % 12.34 %
Criteo 0.48 % 13.69 %
Tapjoy 0.46 % 4.34 %
StartApp 0.46 % 3.25 %
Supersonic 0.42 % 4.68 %

Table 3.6 Fraction of overall traffic and app penetration for the 20 cloud services that account
for the most traffic in our measurements of popular apps.

Figure 3.21 Despite a similar trend, we observe notable differences in cloud traffic of popular
apps across the different countries in our study.

Most Prevalent Cloud Services

Given the frequent usage of cloud services by the 500 most popular apps per country,
we now identify the most used cloud services to understand which individual services
are particularly responsible for this cloud exposure. To this end, Table 3.6 contains
the 20 cloud services with the highest fraction of traffic across the 500 most popular
apps in all five countries. Furthermore, we list for each cloud service the fraction
of apps that established at least one connection to this service. Here, we observe
that the landscape of mobile cloud services is indeed highly centralized, with Google,
Amazon, and Akamai each accounting for more than 10 % of an app’s network traffic
on average. Additionally, four cloud services (Google, Amazon, Akamai, and Face-
book) are utilized by more than 50 % of the studied apps, significantly increasing
the likelihood that users are exposed to these services. When studying these num-
bers, it is important to keep in mind that one network packet can be attributed to
more than one cloud service when services are realized on top of each other. This
situation occurs, e.g., for the audio distribution cloud service SoundCloud, which
partly utilizes Amazon EC2 as infrastructure according to our findings.

Given the deviation in overall cloud usage between different countries identified in
Figure 3.19, we now focus on what causes this effect by studying the most-used cloud
services in each country in Figure 3.21. While overall we observe a similar trend

86 3. Raising Awareness for Cloud Usage

Figure 3.22 Identical apps utilize cloud services differently when operated in different countries.

across the five countries, notable differences exist: Verizon (2.7 % to 6.3 %) and
Unity (2.9 % to 4.8 %) are among the five most-used services in only three countries
(Mexico, Russia, and the USA for Verizon as well as Brazil, India, and Russia for
Unity). Furthermore, Facebook (4.0 %) is not among the five most-used services in
Russia. Finally, while Google accounts for the highest cloud usage in Brazil, India,
Mexico, and Russia, Amazon (24.4 %) accounts for more traffic than Google (21.4 %)
in the USA. Hence, the most popular apps in one country lead to a different cloud
exposure and thus different privacy risks compared to other countries.

Influence of Location

To answer the question on whether the observed differences in cloud usage result
from different apps used in the five countries or if cloud usage indeed differs based on
users’ location, we study the influence of location on cloud usage by testing identical
apps for the five countries. Hence, we tested the 73 apps that are among the 500
most popular apps in all of our five countries and synchronized measurements across
countries to rule out dependencies on time factors. Again, we ran the experiment
on 10 different days.

We first study the cloud usage of the 73 apps by comparing the resulting fraction
of cloud traffic for the five cloud services with the highest traffic in each country in
Figure 3.22. While we observe an overall similar pattern of utilizing cloud services
across all countries, we still derive differences between the individual countries: First,
India (16.5 %) and Russia (15.3 %) show more traffic for Akamai than the other
countries (10.0 % to 12.2 %). Second, Microsoft is among the five cloud services with
the highest amount of traffic in India, compared to Verizon for the other countries.
Hence, the exposure of users to different cloud services does not only depend on the
used apps, but also on the location of the device.

To further study the influence of location, we rely on information on the position
of data centers for some, especially larger cloud services that make this information
public (cf. Section 3.3.2.2). We use this information to investigate whether the
(network) location of a mobile device has an influence on the geographical distribution
of contacted cloud services. More specifically, we show the fraction of traffic that
we were able to assign to a geographic location (aggregated based on continents) in

3.3. CloudAnalyzer: Uncovering the Cloud Usage of Mobile Apps 87

Figure 3.23 Identical apps partly use data centers on different continents when operated in
different countries.

Figure 3.23. While the majority of traffic (for which we could derive a location) flows
to North America (8.4 % to 9.7 % of overall traffic), we can observe that apps tend to
connect to geographically close cloud data centers. This observation is illustrated by
an increased fraction of cloud traffic to South America for Brazil, to Asia for India,
and to Europe for Russia. Such information on the location of data centers used by
apps allows users to execute their right to privacy, e.g., when deciding between apps
with similar functionality [ZSW13, LLSH14]. More specifically, a user could prefer
those apps that only connect to data centers located in the user’s legislation.

3.3.4 Summary and Future Work

Apps on smartphones have access to a growing amount of sensitive information. As
apps nowadays increasingly realize their functionality through cloud services, they
potentially expose users’ private information to a variety of third parties. Even
worse, users are often unaware of the resulting possible erosion of their privacy.
Starting from these observations, we provide a detailed analysis of the mobile cloud
landscape which indicates and concretizes significant privacy risks.

Our problem analysis makes evident that users need to regain control over their
privacy. As a first step towards this goal, we have to raise their awareness of their
individual exposure to cloud services and the implied privacy risks. To achieve this
goal, we present CloudAnalyzer which provides users with detailed statistics of their
individual cloud exposure caused by their smartphone apps. CloudAnalyzer locally
monitors network traffic of apps and detects communication with 55 cloud services
that represent the mobile cloud computing landscape. As a consequence, we not
only reveal the hidden exposure to cloud services caused by smartphone apps but
also untangle complex and non-transparent data flows caused by indirection and
subcontracting between cloud providers.

To show the applicability of CloudAnalyzer, we deploy CloudAnalyzer to 29 devices
to reveal the cloud exposure of actual users over the course of 19 days. Additionally,
we analyze the cloud entanglement caused by the 5000 most used mobile websites
as well as the 500 most popular apps in five different countries. Our results con-
firm that smartphone users are indeed exposed to cloud services: About 90 % of

88 3. Raising Awareness for Cloud Usage

all studied apps contact at least one cloud service and 36 % of apps used by volun-
teers exclusively communicate with cloud services. One volunteer even reported on
uninstalling an app due to excessive cloud usage uncovered by CloudAnalyzer.

We identify three promising directions for future work. First, CloudAnalyzer cur-
rently focuses on detecting the destination of apps’ communication (i.e., used cloud
services). To correlate identified communication with specific cloud services to the
severity of resulting privacy risks, it is also important to consider the content of apps’
communication (i.e., which private information is transferred out of the smartphone).

Here, our efforts can be nicely complemented by different streams of related work.
Dynamic data flow tracking systems for Android such as TaintDroid [EGH+14] and
TaintART [SWL16] monitor data flows during execution of an app to identify actual
data leakage that occurs while executing an app. Detected data leakage occurring
through system calls to send out data could be combined with CloudAnalyzer’s
ability to identify cloud services an app is communicating with. This approach,
however, requires the modification of the system image of the mobile operating
system—a solution likely not feasible for less technically proficient users.

Without modifying the mobile operating system, PrivacyGuard [SH15] and Re-
Con [RRL+16] detect leakage of personal information purely based on observed
network traffic. When targeting leaks of personal information over encrypted con-
nections, this, however, introduces the challenge of securely intercepting TLS connec-
tions [NSV+15]. Still and especially in lab settings, combining CloudAnalyzer with
approaches to detect and classify the content of leaked personal data is a promising
endeavor to further provide users with information on their individual exposure to
cloud services and thus raise their awareness of the potential privacy risks resulting
from uncontrolled cloud usage.

Second, CloudAnalyzer can be used as a foundation to enable users to compare their
personal app-induced cloud exposure to that of their peers to discover potential pri-
vacy risks resulting from deviating from normal usage behavior. In the remainder
of this chapter, we describe how the underlying concept of comparison-based pri-
vacy [ZHHW15] can be realized in a privacy-preserving manner and report on a
preliminary feasibility and applicability study based on CloudAnalyzer.

Finally and besides the technical results presented within the scope of this disserta-
tion, the question arises how users perceive the information provided by CloudAn-
alyzer. For example, users could change their behavior of using smartphone apps
to avoid or to reduce the usage of cloud resources. Such aspects are promising
subjects of future work, especially targeting social and psychological implications of
CloudAnalyzer.

To conclude, CloudAnalyzer empowers users to critically review their individual ex-
posure to cloud services. With a clear view of their exposure and risk, users are
encouraged to adapt their app usage behavior or to take more informed decisions
when choosing between apps with similar functionality. Notably, CloudAnalyzer
also constitutes a valuable tool for researchers interested in understanding the char-
acteristics of users’ exposure to cloud services.

3.4. Privacy-preserving Comparison of Cloud Usage 89

Similarly, CloudAnalyzer is beneficial for app developers to ensure compliance with
data protection regulations. Using CloudAnalyzer, developers can ensure that their
app (and included third party libraries) does not inadvertently contact (certain)
cloud services, especially if these are located in countries with weaker data protection
regulations [FM12].

3.4 Privacy-preserving Comparison of Cloud Usage

MailAnalyzer and CloudAnalyzer provide users with detailed statistics about their
individual cloud exposure when using email respectively mobile apps. However,
although having access to such information, less technically proficient users might
still wonder how dangerous (or not) their individual own usage behavior is. Hence,
we want to enable users to anonymously compare their own cloud usage profile with
the profiles of other, “similar” users.

To this end, we adapt the concept of comparison-based privacy that we developed
for the similar context of over-sharing in social media [ZHHW15] to enable users
to compare themselves along different privacy-relevant metrics to the usage behav-
ior within their peer groups. To this end, we group users based on lifestyle and
sociodemographic background and derive a representative cloud usage pattern for
each group. Thereby, we enable users to compare themselves to different comparison
groups and hence allow them to better assess their individual cloud usage as a basis
for making an informed decision on their future usage of cloud resources.

Comparison-based privacy is motivated by the general social observation that com-
parisons are widely used by humans in their everyday lives to assess their own
status, behavior, and decisions. Such comparisons are also effective in influencing a
person’s behavior, especially with respect to the bounded rationality of individuals
and organizations, i.e., situations of limited possibilities for rational decision making
(e.g., due to limited information, time, and cognitive resources) [Sim91]. For exam-
ple, comparing oneself with others might prove particularly helpful in situations in
which the actor has little knowledge [GG11]. This group-based comparison provides
the user with a starting point for assessing her individual cloud usage risks.

Besides promising benefits, comparing cloud usage with other users poses privacy
concerns itself, as the information which cloud services are used to which extent
might reveal sensitive information: (i) the operator of the comparison system could
learn the peer groups to which a user associates, (ii) the operator of the comparison
system could try to infer the identity of a user, (iii) the operator of the comparison
system could link together multiple contributions of a user, and (iv) small compari-
son groups could leak a user’s contributions or installed apps.

Thus, from a technical perspective, we need to ensure that an individual’s contri-
bution to our group-based comparison is anonymous, i.e., no party may learn who
contributed which usage patterns to the comparison. To this end, we employ a
crowdsourcing approach with strong differential privacy [Dwo06] guarantees. As the

90 3. Raising Awareness for Cloud Usage

affiliation to certain peer groups itself may constitute private information worth pro-
tecting, we additionally need to unlink the (timely) correlation of contributions of a
single user.

In the following, we securely realize comparison-based privacy to nudge users on
their individual exposure to cloud services. Our system design introduces a privacy
proxy that hides users’ identities and employs k-anonymity [Swe02] as well as differ-
ential privacy [Dwo06] to aggregate and to further protect user contributions from
disclosure. To study the feasibility and applicability of our approach, we evaluate it
in the context of cloud usage caused by smartphone apps (cf. Section 3.3).

3.4.1 Related Work

Different approaches in related work provide a foundation for our goal of securely
realizing comparison-based privacy in the context of cloud usage. The first group
of approaches addresses the question of how to release aggregated statistics derived
from a central database containing personal information contributed by users in a
privacy-preserving manner. Sweeney [Swe02] introduces the notion of k-anonymity
which essentially defines that the set of quasi-identifiers (cf. Section 2.2.1) must be
identical among at least k users, i.e., there is an anonymity set of size at least k in
which users cannot be distinguished based on their quasi-identifiers.

To account for situations where all sensitive database values for a set of quasi-
identifiers are identical or chosen from a small known set, Machanavajjhala et al.
[MKGV07] extend the notion of k-anonymity with l-diversity. Here, in addition
to having the same quasi-identifiers, contributions from different users are required
to have different database values. Similarly, Wong et al. [WLFW06] propose (α,
k)-anonymity to limit the relative frequency of a specific database value to a user-
defined threshold α. To provide even stronger privacy guarantees, Li et al. [LLV07]
propose t-closeness that aims at a situation in which the distribution of database
value within an anonymity set is close to the distribution of this database value
within the complete database.

While the previous approaches aim at anonymizing identifying information, they
still report the exact database values. However, these might still be exploitable to
retrieve information on users, e.g., if all users in an anonymity set report the same
value. In this context, differential privacy [Dwo06] aims at a situation in which
it is impossible to tell whether a specific database entry has been included in an
aggregated statistic or not.

To achieve differential privacy, the aggregate is typically distorted with specifically
crafted noise, e.g., sampled from a Laplacian distribution. The amount of added
noise (and hence the level of privacy) is controlled by the differential privacy pa-
rameter ε. Although all these approaches in their original form aim at a scenario
where one central entity knows all database values in cleartext, they still provide
valuable input for our work. Indeed, we apply the concepts of k-anonymity and dif-
ferential privacy, but we need to realize them in a distributed fashion, where users
only contribute encrypted quasi-identifiers and sensitive values.

3.4. Privacy-preserving Comparison of Cloud Usage 91

Working towards this direction, PDDP [CRFG12] realizes a distributed system in
which clients locally store their data and apply differential privacy to protect their
answers when answering queries posed by analysts. In their subsequent approach
SplitX [CAF13], the authors propose an XOR-based encryption scheme (similar to
a one-time pad) and publish-subscribe channels to further increase the efficiency
of differentially private queries over distributed user data. Following a different
approach, Haze [BOT13] realizes a system for collecting road traffic statistics in a
privacy-preserving manner. This system is based on a voting protocol, where users
upload an encrypted vote for a range of values, e.g., their current speed.

Finally, RAPPOR [EPK14] builds on the notion of randomized responses—again
in the setting of crowdsourcing statistics from user devices—and applies it to sets
represented as Bloom filters directly on the users’ devices. These approaches have
in common that they work on some notion of histograms, where—besides the inten-
tionally introduced noise—additional distortion is introduced by assigning values to
bins that form the histogram. Working on histograms is typically necessary as these
systems aim at supporting a wide range of application scenario. In our setting, we
work on a strictly constrained value range and hence can directly operate on integers
to achieve less distorted results.

3.4.2 System Design

The underlying idea of our approach is to empower users to compare their individual
cloud usage with the cloud usage of other, “similar” users. To this end, we propose
to leverage established milieu concepts, which deliver social segmentation indicators
that can be used to assign users to peer groups based on social values, mindset,
media usage, and consumer behavior6. For each of these groups, we derive the
average cloud usage (e.g., for a specific app) and hence allow users to compare the
exposure to cloud services with their peers. This comparison enables them to take
a more informed decision regarding the usage of cloud services or certain apps.

The idea underlying our system design is to collect statistics for peer groups at a
central entity and distribute them in aggregated form to all group members. To
realize this functionality, it is indispensable that users have to share information
about their cloud usage with other parties. However, both individual statistics on
the usage of cloud-based services as well as affiliation with peer groups are sensitive
information. Hence, our system has to be designed in a way that guarantees the
privacy of all user contributions.

To this end, we introduce a privacy proxy to ensure that all user contributions are
sufficiently anonymized such that even the operator of the system cannot gain ac-
cess to contributions of individual users. As we show in Figure 3.24, the smartphone
collects statistics on cloud usage and periodically sends these statistics in encrypted

6Creating and evaluating approaches to derive peer groups is an ongoing effort that is mainly
driven by our collaborators from the sociology department. Since our system design is agnostic to
the approach for creating peer groups, we focus on the technical specifics of realizing comparison-
based privacy for comparing cloud usage in a privacy-preserving manner in the following.

92 3. Raising Awareness for Cloud Usage

Figure 3.24 To realize comparison-based privacy in a privacy-preserving manner, the privacy
proxy creates an anonymity set over different contributions for the same key. The values for
one anonymity set are aggregated and distorted before they are sent to the statistics server,
which distributes the resulting aggregated noisy cloud usage statistics over an API.

form to the privacy proxy. The privacy proxy—without being able to decrypt the
statistics—aggregates statistics of different users that belong to the same measure-
ment (e.g., the cloud usage for a specific app within a peer group on a certain
day). As soon as the privacy proxy received enough contributions for a measure-
ment (from different users) to guarantee anonymity, it sums up the measurements
and adds random noise before releasing the aggregate to the statistics server. The
statistics server is able to decrypt the aggregated statistics and persists them in a
database. To enable comparison within a peer group, each user can then query the
statistics server for the aggregated (noisy) result of a specific measurement.

In the following, we first present our security assumptions before we discuss the
three entities in our privacy-preserving comparison system in more detail.

Security Assumptions

The underlying assumption of our system design is that the privacy proxy provides
its functionality in an honest-but-curious manner (cf. Section 2.3.2). Hence, the
privacy proxy operates according to the protocol specification, which includes that
its interfaces do not only accept all correctly formatted data but also process and
store it as intended. We do not make any assumptions regarding the statistics server,
hence it can behave maliciously, e.g., trying to deanonymize users. However, we do
assume that all communication between the three entities in our system is secured
according to the state-of-the-art, e.g., using TLS, to protect against outside entities.
Our system design is secure as long as the privacy proxy and the statistics server do
not collude, which can, e.g., be realized and enforced through contracts and auditing
of systems (cf. Section 2.1.3).

Smartphone

We use CloudAnalyzer (cf. Section 3.3) to detect cloud usage of mobile apps on An-
droid using IP addresses, DNS names, and TLS information obtained from passive
network traces. Based on the information provided by CloudAnalyzer, the smart-
phone calculates the contribution value for each day and app, i.e., the fraction of

3.4. Privacy-preserving Comparison of Cloud Usage 93

traffic that has been sent to cloud services, and encrypts this value with the public
key of the statistics server using an additively homomorphic cryptosystem. Further-
more, it creates a contribution key identifying the measurement by the app’s name,
date, and an identifier for the peer group. The smartphone then encrypts the contri-
bution key with the statistics server’s public key using a deterministic cryptosystem
and sends the encrypted key and value to the privacy proxy.

Periodically, the smartphone queries the statistics server to retrieve the aggregated
statistics for all relevant contribution keys (depending on the apps and peer groups
of the user). It then presents the resulting average cloud usage statistics for each
app and peer group together with the user’s own cloud usage statistics to the user.
We show an example for this graphical representation in Section 3.4.3.

Privacy Proxy

The core task of the privacy proxy is to separate user contributions from their
origin, i.e., any information that can be used to identify an individual user. To
achieve this goal, the privacy proxy performs two tasks: (i) creation of a sufficiently
large anonymity set and (ii) aggregation and distortion of user contributions. We
briefly discuss these two tasks in the following.

Anonymity Set. The privacy proxy employs k-anonymity [Swe02] to prevent that
collected statistics can be used to infer information on individual users that con-
tributed statistics on their cloud usage. To this end, the privacy proxy waits until
it received at least k contributions of the same contribution key, i.e., a measure-
ment identified by app name, date, and peer group, to create a sufficiently large
anonymity set. Only after the privacy proxy received enough contributions, it ag-
gregates these contributions, applies differentially private noise, and forwards the
result to the statistics server. To further increase privacy (and the number of usable
contributions), the privacy proxy can also first buffer received contributions for a
certain period (e.g., a day), before it processes the data for all contribution keys
with ≥ k contributions.

To create such an anonymity set, the privacy proxy needs to be able to differentiate
between different contribution keys. However, since the contribution key itself con-
tains sensitive information, such as the apps installed on a user’s smartphone and
her affiliation with peer groups, only the statistics server should be able to read this
key. Hence, we employ a deterministic cryptosystem to encrypt contribution keys
such that only the statistics server can decrypt and hence access this information.
Although the privacy proxy cannot decrypt received contribution keys, it can lever-
age the deterministic property of the cryptosystem to derive which values belong to
the same key (as the same plaintext is mapped to identical ciphertext) and hence
create an anonymity set of size at least k. In our setting—unlike related work—
employing k-anonymity is sufficient because we only release aggregated results that
are additionally protected using differential privacy.

Aggregation and Distortion of Contributions. To further protect cloud usage
statistics within an anonymity set, the privacy proxy aggregates and distorts them

94 3. Raising Awareness for Cloud Usage

before forwarding them to the statistics server. Again, since the (unaggregated)
cloud usage statistics contain sensitive information, only the statistics server should
be able to decrypt them. To still allow the privacy proxy to aggregate and distort
the statistics, we employ an additively homomorphic cryptosystem where only the
statistics server can decrypt the ciphertext, but everyone can perform additions on
the encrypted values. As the statistics server should only have access to the average
within the anonymity set, the privacy proxy adds up all contributions within the
anonymity set under encryption and only sends the still encrypted sum as well as
the size of the anonymity set to the statistics server.

To further restrain possible conclusions about the cloud usage of individual users that
contributed their cloud usage statistics, e.g., because all users in an anonymity set
have similar cloud usage behavior, the privacy proxy distorts the aggregated result
using differential privacy [Dwo06] before forwarding it to the statistics server. More
specifically, the privacy proxy randomly samples noise from the Laplace distribution
centered around 0:

Lap(x|λ) = 1
2λ

exp
(

−|x|
λ

)
, with λ = Δf

ε

where Δf is the sensitivity of the aggregation function, i.e., the maximal influence
of the contribution of a single user on the overall result (as we consider the average
cloud usage of an app across users, Δf is 100 % in our scenario), and ε is the privacy
parameter that controls the amount of noise (a smaller ε results in more noise and
hence increased privacy but reduced utility). The privacy proxy then adds the
sampled noise to the encrypted sum. Finally, the privacy proxy releases the still
encrypted noisy sum, the number of values in the anonymity set, and the encrypted
contribution key to the statistics server.

Statistics Server

The statistics server receives encrypted, aggregated, and distorted cloud usage statis-
tics for a specific contribution key from the privacy proxy. It then decrypts the
received contribution key and the noisy sum and calculates the noisy mean value by
dividing the noisy sum by the number of values. Finally, it stores the contribution
key and the mean value in a database. Users can query the statistics server for the
anonymized mean cloud usage for a particular contribution key (app name, date,
and peer group), which enables them to compare their own cloud usage (stored on
their smartphone) to a peer group. In this process, the secure combination of privacy
proxy and statistics server guarantees the privacy of users and their contributions
(under the assumption that privacy proxy and statistics server do not collude).

3.4.3 Feasibility Study

To assess the feasibility and applicability of our approach, we realize a prototype
of the smartphone component for Android as well as implement the privacy proxy

3.4. Privacy-preserving Comparison of Cloud Usage 95

Figure 3.25 The size of the anonymity set k directly influences the amount of contributions
that can be utilized for comparison-based privacy. Buffering contributions for a day slightly
increases the fraction of contributions that can be utilized.

and the statistics server using Python. We use Paillier [Pai99] as additive homomor-
phic cryptosystem as well as a combination of salted SHA-256 hashes and a crypto
box construction based on Curve25519, Salsa20, and Poly1305 [Ber09] to mimic a
deterministic cryptosystem.

For our evaluation, we rely on the measurements we performed to study the cloud
usage of actual users on their smartphones in the context of CloudAnalyzer (cf.
Section 3.3.3.1). These measurements encompass cloud usage statistics we retrieved
from 29 Android devices operated by volunteers over a period of 19 days. In total,
these cloud usage statistics cover 383 different apps and 347 days of mobile device
usage. We refer to Section 3.3.3.1 for a more detailed discussion of the study design
and ethical considerations.

In the following, we first study the influence of the two privacy parameters of our
system (size of the anonymity set k and differential privacy parameter ε) before we
show an example comparison result for the cloud usage based on our user study.

Influence of Size of Anonymity Set

We study the influence of the size of the anonymity set (k) in Figure 3.25. The
choice of k directly influences which contributions can be included in the analysis,
as contributions for a specific key (app name, date, peer group) can only be used if
at least k users provide their values.

Furthermore, the privacy proxy can either directly forward contributions as soon as
the threshold k is reached or first buffer them (e.g., for a day) before releasing data
for all keys with ≥ k contributions. For the 29 devices and 19 days we cover in our
user study, Figure 3.25 shows that 28.9 % of contributions (difference between k =
1 and k = 2) are unique and hence cannot be shared without diminishing privacy.
By buffering contributions for a complete day, we can slightly increase the fraction
of contributions that can be leveraged for the comparison.

For a reasonable choice of k = 5 (for our small number of contributors) [WDL13],
we can still leverage 39.3 % (direct release) respectively 46.0 % (buffered release) of

96 3. Raising Awareness for Cloud Usage

Figure 3.26 Increasing the differential privacy parameter ε reduces the mean absolute error of
the aggregated result as less noise (and hence less privacy protection) is added.

contributions. For larger numbers of users—where more usable contributions are
expected—increasing k to 10 is advisable [WDL13]. For our small dataset, we fix
k = 5 and buffer contributions for one day in the following.

Influence of Differential Privacy

To study the impact of differentially private noise, we replay the data collected
by our volunteers 30 times using real random seeds [Wal96] to generate Laplacian
noise for different privacy parameters ε. Figure 3.26 shows the distribution of the
mean absolute error for each app and day (over 30 runs) for different ε. While the
majority of approaches in related work uses values of ε < 1, our rather high choices
of ε are also reflected in prominent related work [MM10,MS10,CLSX12], especially
for comparatively small data sets such as in our feasibility study. The challenge
of applying differential privacy in our scenario is to add noise such that privacy is
protected and the result is still usable, as the statistics server no longer receives an
accurate result due to the distortion. For ε = 1, the mean absolute error on average
amounts to 12.0 % (dotted line), which clearly impacts utility. In contrast, ε = 5
with a mean absolute error of on average 2.4 % provides a good trade-off between
privacy and utility for our small dataset. We hence use ε = 5 in the following.
When considering a real world deployment of our approach with likely hundreds of
contributions for a specific key, it is both possible and advisable to choose a smaller
ε do offer a higher level of privacy protection.

Exemplary Comparison Result

Figure 3.27 exemplarily shows the comparison result of one of our volunteers to their
peer group (all volunteers in our study) for two prominent apps. We selected these
two smartphone apps—Chrome and Gmail—as they are prime candidates to showcase
different aspects related to the result of the comparison and potential impact on
users. The violet line in Figure 3.27 represents the anonymized mean cloud usage
within the user’s peer group (in our case all 29 devices) with a 10 % margin (thick
lighter violet line). Over a period of two weeks, each dot represents the cloud usage

3.4. Privacy-preserving Comparison of Cloud Usage 97

Figure 3.27 In this exemplary comparison result of one user to their peer group, we observe
that the user’s cloud usage follows the group’s average rather closely for the Chrome app but
clearly deviates from average usage behavior for the Gmail app.

of the user on a particular day. Here, colors inform the user how much their cloud
usage deviates from those of the peer group. A green dot lies within a 10 % margin
of the anonymized mean cloud usage, while orange dots deviate by at least 10 % and
red dots by at least 20 % from the mean cloud usage, respectively. The gray dot
reported on the first day for the Gmail app indicates that not enough contributions
for a privacy-preserving comparison where received and hence no comparison is
possible. For our volunteer, we observe that the usage pattern is quite similar to
the peer group for the Chrome app. However, for Gmail (the standard email app
on Android) the volunteer’s cloud usage is significantly higher than the average of
the peer group, identifying potential privacy risks as the user apparently is using a
cloud-based email service while other users in the peer group (at least partly) use
email services not hosted in the cloud.

3.4.4 Summary and Future Work

Relating privacy risks to the app-induced cloud exposure significantly challenges
less technically proficient users. We apply the concept of comparison-based privacy
to the cloud usage of smartphone apps and present a system design to realize this
concept in a privacy-preserving manner. To this end, we introduce a privacy proxy
that ensures that all user contributions are sufficiently anonymized based on the
concepts of k-anonymity and differential privacy such that even the operator of
the system cannot derive contributions of individual users. With our approach,
we enable users to anonymously compare their cloud usage with those of the users
in their peer groups and hence allow them to better assess their individual cloud
usage risk. As a result, we lay the foundation for users to make informed decisions
on suitable means for sufficient self-data protection for their future use of cloud
services. The results of our feasibility study indicate that anonymously comparing
the extent of cloud usage is indeed a feasible and promising approach to nudge users
towards exercising their right to privacy.

Given the preliminary status of our feasibility and applicability results, future work
is mainly concerned with testing and validating our approach in a larger study. To

98 3. Raising Awareness for Cloud Usage

this end, we are working with sociologists to create and evaluate different approaches
to derive peer groups. Here, we plan to take into account social milieus, social val-
ues, as well as attitudes to work, family, leisure, and media consumption. Given that
mindsets and value-orientations are somehow stable cognitive orientations underly-
ing lifestyles and consumption patterns, we consider this milieu-based segmentation
approach to hold significance for grouping and comparing the users of cloud-based
services. Furthermore, we believe that our approach is also valuable to study other
privacy aspects beyond cloud exposure, e.g., the privacy risks involved with location
sharing on mobile devices, such as smartphones and GPS trackers.

3.5 Conclusion

Based on the observation that everyday technology, such as email, mobile apps, and
IoT devices, increasingly relies on cloud services—often without users’ awareness
of (the extent of) their exposure to these services and resulting privacy risks—we
proposed to put users back into control over their privacy by uncovering their cloud
usage and thus raise their awareness for the resulting privacy risks. We selected two
important deployment domains of cloud services even less technically proficient users
regularly interact with to develop approaches that uncover the resulting exposure to
cloud services. Additionally, we realized support for users in contextualizing their
cloud usage through privacy-preserving comparisons with their peers.

MailAnalyzer targets cloud-based email services as our first deployment domain.
To this end, it analyzes information contained in the protocol headers of received
emails and correlates this information with data publicly provided by cloud and
email providers as well as patterns derived from the Internet infrastructure such
as DNS or BGP routing data to detect the usage of cloud resources. We utilized
MailAnalyzer both to study email infrastructure that is used when sending email as
well as to analyze the cloud usage of 31 million actually received emails. The results
we obtained using MailAnalyzer reveal that as of 2016, 13 % to 25 % of the received
emails in our study were exposed to cloud services. Notably, 30 % to 70 % of this
cloud usage cannot be detected by simply looking at the sender or the receiver.

For our second deployment domain, CloudAnalyzer is concerned with the usage
of cloud-based services by mobile apps on smartphones. CloudAnalyzer runs on
unmodified off-the-shelf smartphones and passively monitors the network traffic of
mobile apps. Similar to MailAnalyzer, it detects cloud usage by comparing DNS,
IP, and TLS protocol information to data of a set of 55 representatively selected
cloud services. Using CloudAnalyzer, we studied the cloud usage of mobile apps in a
user study with 29 volunteers during a period of 19 days, by crawling the 5000 most
popular mobile websites, and through automate execution of the 500 most popular
apps in five different countries. Our study results show that 90 % of mobile apps
connect to cloud services with an average number of 3.2 contacted cloud services
per app. Out of the apps installed on the devices of our volunteers, 36 % exclusively
communicate with cloud-based services.

3.5. Conclusion 99

Finally, we apply the concept of comparison-based privacy to enable users to put
their cloud usage into context through comparison with their peers in a privacy-
preserving manner. Our system employs k-anonymity and differential privacy on
encrypted cloud usage statistics to retrieve noisy aggregate cloud usage statistics
for different peer groups. We performed a preliminary study on the feasibility and
applicability of our approach based on cloud usage data obtained from 29 mobile
devices during a period of 19 days. The results of this study indicate that the
privacy-preserving comparison of cloud exposure is a feasible and promising approach
to uncover the potential privacy risks of cloud usage and hence support users in
exercising their right to privacy.

In this chapter, we addressed the research question on how cloud users can en-
force their privacy when using cloud services. To this end, our contributions mainly
target the core problem of cloud computing’s technical complexity and missing trans-
parency with the ultimate goal to put users back in control over their privacy. Our
results presented in this chapter reveal that typical users are exposed to a large num-
ber of cloud services and to large extent during everyday Internet activities. Both,
by providing users with statistics on their individual exposure to cloud services and
by enabling them to contextualize these statistics through comparisons with their
peers, we provide users with the transparency over the utilization of cloud-based
services that has been missing so far.

It is important to note that the results we obtained in this chapter not only serve as
a foundation for users to regain control over their privacy but also serve as a clear
motivation for the need to account for privacy in the cloud computing landscape
and hence our remaining contributions that comprehensively cover infrastructure
providers, service providers, and cloud users to make cloud computing more privacy-
friendly by overcoming the core problems for privacy in cloud computing that we
identified in Section 1.1.3.

100 3. Raising Awareness for Cloud Usage

4
Data Handling Requirements-aware
Cloud Infrastructure

The results presented in the previous chapter motivate the imminent need to ac-
count for privacy in the cloud computing landscape. We now turn our attention to
the different actors in the cloud computing landscape and how each of them can
contribute to making cloud computing more privacy-aware.

In this chapter, we begin these efforts by addressing our research question on how
infrastructure providers can support service providers and cloud users in executing
control over privacy. To this end, we first summarize the motivation for and vision
of data handling requirements-aware cloud infrastructure [HHW13a, Gro13, Kop13,
HGKW13] and derive the necessary components to realize this vision (Section 4.1).

As our first component to realize a data handling requirements-aware cloud infra-
structure, we present our compact privacy policy language (CPPL) [Sch15,HHS+16],
through which we enable users to express their data handling requirements and turn
them into a concise representation that serves as a foundation for respecting data
handling requirements when storing data in the cloud (Section 4.2). Based on this
policy language, we introduce PRADA [Gie14,Seu15,HMH+17,HMH+18], a general
key-value based cloud storage system that offers rich and practical support for data
handling requirements to overcome current privacy limitations (Section 4.3). We
conclude this chapter with a discussion and summary of our work (Section 4.4).

4.1 Motivation and Vision

When moving sensitive data, e.g., customer records or sensed information, to the
cloud, users (both private and corporate) often impose data handling requirements
(DHRs) that need to be met by the cloud provider (cf. Section 2.3.1). For example,

102 4. Data Handling Requirements-aware Cloud Infrastructure

Figure 4.1 A user adds an annotation to her data (“delete after 30 days”) before it is passed
to the cloud. Based on this annotation, the service chooses an infrastructure which then places
the data on a physical device together with other data that should be deleted in 30 days.

a company using a cloud storage service might require that the data of its customers
is stored and processed only in a specific legislation to comply with legal require-
ments. However, in current cloud infrastructure, it is extemely difficult to meet
these requirements adequately, as users cannot specify their requirements and cloud
providers thus remain completely oblivious of these requirements. More importantly,
even if cloud providers were willing to adhere to users’ requirements, they often lack
the technical means to do so at a fine granularity and instead retreat to static SLAs
(cf. Section 2.1.3) that provide users with only little choice. Consequently, the ability
to support DHRs would allow cloud providers to enter new markets by addressing
customers which want or have to adhere to these requirements.

To achieve support for DHRs in cloud infrastructure, we propose to enrich data in
a cloud environment with data handling annotations. Data handling annotations
(also known as sticky policies) are a well-established method in the field of data
usage management and control [PSM09,ADBK10,PM11,SM12] and we propose to
leverage them to signal DHRs across the different entities in the cloud stack (cf.
Section 2.1.2.1). We illustrate our vision of annotating data with DHRs using an
example in Figure 4.1. In our example, we consider a cloud service that provides
storages and synchronization of data across different devices (similar to, e.g., Drop-
box). The user wants to upload a file that should be securely deleted after 30
days. To this end, she annotates her data accordingly before she sends it to the
cloud service. Subsequently, the cloud service verifies whether or not it can fulfill
this obligation and (potentially) chooses between different infrastructure providers
it has under contract to select one that is able to fulfill the user’s requirement.

The chosen infrastructure provider then has to decide on which part(s) of its storage
infrastructure the file should be stored. To ensure the secure deletion after 30 days
(cf. Section 2.3.1), the infrastructure provider could put data with similar deletion
dates on the same physical device and securely dispose it off once the deadline
for deletion has passed. Without the possibility for users to annotate their data
with DHRs, the infrastructure provider does not know about these requirements
and hence cannot adhere to them. Not only users but also cloud providers benefit
from a support of DHRs: Besides enabling cloud providers to tap into the market of

4.1. Motivation and Vision 103

Figure 4.2 Besides the DHRs of the user, each service can add additional requirements.
Services use a broker to locate infrastructure providers that comply with the stated DHRs.

customers that are currently unable to utilize the cloud, providing support for DHRs
empowers operators to efficiently handle differences in regulations across legislations
and industries, similar to the advantages of secure cloud services [CHHD12].

4.1.1 A Data Handling Requirements-aware Cloud Stack

When speaking about data handling annotations as the foundation for a DHRs-
aware cloud stack, we consider entities in a layered system, where data is exchanged
vertically between entities on adjacent layers as well as horizontally between entities
on the same layer. Each entity on the data handling path can add data handling
annotations to the data. The resulting data handling obligations are then considered
binding for everyone on the remaining portion of the data handling path. We argue
that this approach is better suited than static SLAs (cf. Section 2.1.3)—prevalent
in the cloud computing landscape today—to fulfill privacy requirements in cloud
computing, since the dynamic nature of cloud computing and constantly changing
and evolving privacy requirements are difficult to handle solely with SLAs [ZB11].

In the following, we further develop the above example to motivate our vision of
a DHRs-aware cloud stack. To this end, Figure 4.2 provides a high-level overview
of our envisioned architecture. In this setting, a cloud service receives data that is
annotated with DHRs from the user. Furthermore, the service provider might itself
impose additional requirements. A prominent example for requirements imposed by
services results from data protection requirements in the EU, which require certain
data on customers to not leave the legislative boundaries of the EU (cf. Section
2.3.1). Hence, the service provider has to select an infrastructure provider that is
able and willing to adhere to the resulting combined set of DHRs imposed by user
and service provider, e.g., by utilizing existing cloud brokers [GB14] which today
determine the best cloud provider based on metrics such as quality of service (QoS),
SLAs, and pricing. These brokers have to be extended to also support matching of
DHRs against capabilities and policies of cloud providers.

As discussed in Section 2.1.2, cloud services can be realized on top of each other,
leading to complex deployment scenarios. In this case, each of the services has
to obey to the DHRs imposed by the user and any cloud services on top of it.
Furthermore, each service can add additional requirements and rely on a broker to

104 4. Data Handling Requirements-aware Cloud Infrastructure

locate an infrastructure provider that can comply with all stated DHRs. Finally, the
infrastructure provider maps data to real hardware and is thus ultimately responsible
for fulfilling the stated DHRs, e.g., when assigning data to storage nodes.

Hence, to realize our vision of a DHRs-aware cloud stack, we require two fundamental
approaches: (i) the possibility (especially for users) to express DHRs and annotate
their data accordingly as well as (ii) a way for cloud providers to comply with DHRs,
showcased alongside the selection of storage nodes in a cloud storage system. In the
following, we discuss the motivation for these two approaches in more detail.

Expression of Data Handling Requirements

Enabling users to express their DHRs in a machine-readable way is necessary to
ensure that cloud services and infrastructure providers can comply with these re-
quirements fully automatized. The widely studied field of privacy policy languages
[KCLC07] deals with expressing privacy policies and requirements and hence is a
prime candidate to serve as our foundation for expressing DHRs. We can differenti-
ate between three different categories of privacy policy languages: (i) languages for
users to specify their privacy requirements, (ii) languages for service providers to
specify their privacy policies, i.e., how they will handle and use data, and (iii) lan-
guages that combine the two approaches to enable the matching or comparison of
user requirements against service provider policies. We consider the third category
most promising in our setting, as this allows users to express their DHRs and enables
service providers to formalize which requirements they support. Thus, when receiv-
ing data annotated with DHRs, the entities in the cloud stack can automatically
check whether they can comply with the stated requirements and act accordingly.

As we discuss in more detail in Section 4.2.1.3, a wide range of privacy policy lan-
guages has been proposed by related work, either generic or specifically tailored for a
specific use case, e.g., to steer access control [GW10,Oas13], to formulate data han-
dling policies [ABP09, TM11], or to support digital rights management [HPB+07].
However, when considering to apply these concepts to the cloud computing land-
scape, we identify two fundamental conceptual shortcomings: (i) constrained scope
and hence limited expressiveness and flexibility and (ii) prohibitive processing, stor-
age, and bandwidth consumption. These shortcomings become even more problem-
atic with the recent proposal to attach DHRs to single network packets, e.g., to
facilitate policy-based routing [KPPK11]. To overcome these fundamental concep-
tual shortcomings in the context of cloud computing, we hence require a privacy
policy language that is both flexible and resource efficient.

Complying with Data Handling Requirements in Cloud Storage Systems

Once users are able to express their DHRs, cloud service and infrastructure providers
are equipped with the necessary information to comply with these requirements.
Here, the main challenge consists in respecting DHRs during the placement of
data onto actual hardware. Most fundamentally, this applies to cloud storage sys-
tems, i.e., any infrastructure services—ranging from distributed file systems over

4.1. Motivation and Vision 105

distributed key-value stores to distributed databases—that offer the persistent stor-
age of data. However, we observe that cloud storage systems today do not offer
support for complying with DHRs. Instead, the decision on which nodes to store
data is primarily taken with the intention to optimize reliability, availability, and
performance [DHJ+07,LM10,ÖV11,GHTC13], thus mostly ignoring the demand for
support of DHRs. Even worse, DHRs are becoming increasingly diverse, detailed,
and difficult to check and enforce [PSBE16], while cloud storage systems are becom-
ing more complex, spanning different continents [AB13] or infrastructures [BRC10],
and even different second-level providers [BLS+09,GB14].

Although the demand for realizing DHRs in cloud storage systems is widely acknowl-
edged, practical support for them is still severely limited [Int12, WMF13]. Related
work primarily focuses on enforcing DHRs while processing data [IKC09,BKDG13,
ELL+14], limits itself solely to supporting location requirements [PGB11,WSA+12],
or treats the storage system as a black box and tries to enforce DHRs at a coarse
granularity from the outside [PP12,WMF13,SMS13]. Hence, a practical solution for
enforcing arbitrary DHRs when storing data in cloud storage systems is still missing.

4.1.2 Contributions

With the goal to realize DHRs-aware cloud infrastructure, we present a mechanism
for users to express their DHRs and an approach for cloud providers to comply with
DHRs when selecting cloud storage nodes as our contributions in this chapter:

1) We present CPPL, a compact privacy policy language specifically designed for
dynamic and high-frequent interaction patterns as they are prevalent in the cloud
computing landscape. CPPL compresses a textual policy specification based
on an interchangeable domain specification to enable adaptation of our domain
specific compression to any (even yet unknown, future) deployment and network
scenario. To illustrate the feasibility of CPPL, we perform synthetic benchmarks
and compare CPPL to state-of-the-art privacy policy languages. Furthermore,
we showcase the applicability of CPPL in the context of cloud computing, the
IoT, and big data. Our results show that CPPL is able to reduce policy sizes by
up to two orders of magnitude compared to related work and to process several
thousand of policies per second in real-world settings, thus making the expression
of DHRs feasible in the scope of cloud infrastructure deployments.

2) We present PRADA, a general key-value based cloud storage system that offers
rich and practical support for DHRs to overcome current compliance limitations.
PRADA adds an indirection layer on top of a cloud storage system to store
data annotated with DHRs only on nodes that fulfill these requirements. Our
design of PRADA is incremental, i.e., it does not impair data without DHRs.
Furthermore, PRADA supports all DHRs that can be expressed as properties
of storage nodes. We prove the feasibility of PRADA by implementing it for
the distributed database Cassandra and by quantifying the costs of supporting
DHRs in cloud storage systems. Additionally, we show PRADA’s applicability
along two use cases on real-world datasets, a Twitter clone storing two million
authentic tweets and a distributed email store handling half a million emails.

106 4. Data Handling Requirements-aware Cloud Infrastructure

4.2 CPPL: A Compact Privacy Policy Language

As the foundation for a DHRs-aware cloud stack, we require a mechanism for users
to express their privacy and data handling requirements in a machine-readable way.
This becomes necessary, since current state of the art, i.e., legal text dictating pri-
vacy policies by providers, can no longer sufficiently address privacy concerns as
a massive growth in the amount of data—fundamentally changing data process-
ing by superseding the prevalence of processing data locally by remote processing
in the cloud—is accompanied by a significant increase in diversity of data sources
[BWHT12] and high granularity of data [HHCW12].

To account for this development, related work proposes per-data item privacy poli-
cies (also referred to as sticky policies) [PM11,SSL12,PBSE16]: Instead of having a
provider dictate one privacy policy for all users, per-data item policies enable each
user to specify her own privacy requirements which then have to be enforced by
the cloud provider. Such policies enable the user to express her individual privacy
requirements down to the level of specific pieces of data. For example, readings
of personal medical devices could be treated differently from much less sensitive
readings of personal weather stations. This combination of user-centricity and gran-
ularity empowers users to effectively remain in control over their data, even if it
leaves their physical control.

With the goal to realize such fine-grained user-centric policies, related work intro-
duced a wide range of policy languages, either generic or specifically tailored to a
certain scenario, e.g., in the area of accounting, banking, handling of insurance infor-
mation, or processing of medical data of patients. However, we find that existing pri-
vacy policy languages are either not flexible enough or require excessive processing,
storage, or bandwidth resources which prevents their widespread deployment. To
overcome these shortcomings and thus to offer support for fine-grained user-centric
policies in an interconnected world, we propose to introduce a domain specific com-
pression step before sending a policy over the network. To this end, we incorporate
flexibly specifiable domain knowledge to realize an efficient bit-level compression.

To provide a foundation for these efforts, we first analyze the deployment and net-
work scenarios in the cloud computing landscape as well as the suitability of privacy
policy languages proposed by related work to address emerging requirements in
these scenarios. Based on our analysis, we find a mismatch between the communi-
cation patterns in such networks and the characteristics of existing privacy policy
languages. Consequently, we propose CPPL, a compact privacy policy language
which compresses privacy policies by taking advantage of flexibly specifiable domain
knowledge to fill this gap.

Notably, CPPL is relevant beyond cloud computing as we show by realizing privacy
policies in the context of the IoT and big data to showcase the applicability of CPPL.
To this end, we evaluate the performance of CPPL and compare CPPL to state-of-
the-art privacy policy languages as proposed by related work. Our evaluation shows
that CPPL can reduce policy sizes by up to two orders of magnitude compared
to related work and can check several thousand policies per second in real-world
scenarios. Hence, CPPL enables individual per-data item policies that serve as the

4.2. CPPL: A Compact Privacy Policy Language 107

Figure 4.3 When data leaves the control sphere of the user, per-data item policies empower
her to still influence routing, processing, and storage decisions.

foundation for a DHRs-aware cloud infrastructure. We provide the source code as
well as a library binding of our implementation of CPPL under the open source
Apache license (version 2)7.

4.2.1 Privacy Policies and Cloud Computing

In this section, we outline our targeted scenario and derive requirements that we
argue must be addressed by any viable solution to the challenge of realizing per-
data item policies for cloud computing. We then rigorously analyze existing policy
languages with respect to these requirements and identify different short-comings
that render existing work mostly inapplicable in our scenario.

4.2.1.1 Scenario

We consider a scenario in which data is transferred out of the user’s control sphere
to cloud-based backend infrastructure as shown in Figure 4.3. While already com-
monplace today, this scenario becomes especially relevant in the context of the IoT
(cf. Section 2.4). An IoT home automation system such as Apple Home [App18a],
e.g., might transfer raw IoT data to a cloud backend to infer a user’s presence and
activity for optimal control of heating, ventilation, and air conditioning appliances.

Furthermore, with the upcoming trend of big data, masses of data will be used to
derive novel insights. These deployment domains have in common that, while con-
sidering huge amounts of data in total, individual data pieces are comparably small.
For example, single IoT measurements can be as small as 72 byte (cf. Section 4.2.3.3).
When transferring this data out of the control sphere of users, it becomes subject
to (overlay) routing, processing, as well as storage operations in the cloud backend.
However, performing these operations outside the control sphere of users raises se-
vere privacy concerns, which ultimately results in a complete loss of control of users
over their data (cf. Section 1.1.3).

7https://github.com/COMSYS/cppl

108 4. Data Handling Requirements-aware Cloud Infrastructure

To overcome these concerns, one promising approach in related work is to attach
per-data item privacy policies (also referred to as sticky policies) to data before it
leaves the control sphere of the user [PM11,SSL12,PBSE16] as depicted in Figure 4.3.
Privacy policies are thus imposed by the user and are binding for all entities involved
in handling the data in the cloud outside the control of the user. More specifically,
data is only allowed to be routed to, processed on, and stored at nodes in the cloud
fulfilling the privacy policy imposed by the user. To this end, the coupling of data
and policy ensures continuous availability of the policy.

All entities involved in handling the data can impose additional, more restricting pri-
vacy policies. For example, this becomes relevant if a cloud service has to adhere to
data protection regulation and wants to pass resulting requirements to the underly-
ing cloud infrastructure. Furthermore, existing data integrity protection mechanisms
can be extended to also cover the privacy policy to prevent modifications to privacy
policies during transmission or data handling. Alternative approaches such as per-
stream policies [NLB13, TLL16], which assign one privacy policy per data stream
instead of individual policies per data item, lack support for the emerging concept
of federated clouds where data is distributed among several cloud providers.

Our aim in this work is a functional improvement over the status quo by reducing
policy sizes to feasible orders of magnitude for an interconnected world. We delib-
erately do not focus on the orthogonal problem of enforcing policies, i.e., providing
(formal) guarantees that cloud nodes indeed adhere to policies. As CPPL does
not change the semantics of policy languages, existing solutions that propose cryp-
tographic guarantees [IKC09, HPB+07], tracking data flows [PBSE16], or creating
audit logs [PJ12] to enforce policies do still apply.

4.2.1.2 Requirements

We refer to the machine-readable formalization of privacy policies as privacy pol-
icy languages. In the following, we derive key requirements for any privacy policy
language for the above-described scenario where (potentially small) data leaves the
control sphere of the user and is forwarded to cloud-based infrastructures, e.g., in
the context of the IoT and big data.

Minimal Storage Footprint: As privacy policies are attached to data and travel
with it through the network, they inadvertently result in additional transmission and
storage overhead. It is thus paramount that privacy policy languages minimize stor-
age footprint. Minimizing the storage footprint of a privacy policy is a quantitative
requirement which can be evaluated by looking at the resulting policy size.

Efficient Policy Checking: Privacy policies are evaluated at numerous times, e.g.,
whenever data is relocated, replicated, and processed. Hence, the overhead for
checking whether a policy matches with the properties offered by a cloud node must
be minimized. The efficiency of policy checking can be quantified by measuring the
processing runtime required for the necessary operations.

Expressiveness: We identify a large spectrum of expectations for the handling of
data: (i) restriction of storage location to a certain country, (ii) deletion of a data

4.2. CPPL: A Compact Privacy Policy Language 109

item at a specified point in time, (iii) logging or notification when data is accessed by
a third party, or (iv) replication rate of data to ensure availability (cf. Section 2.3.1).
Hence, a privacy policy language must provide the ability to express expectations
for these various kinds of data handling. This requires the support of environmental
context, e.g., awareness of storage location or replication rate, time-based triggers to
specify the point in time for a future action such as deletion, and event-based triggers
to initiate actions when an event such as data access occurs [ABP09]. Expressiveness
of privacy policy languages is a qualitative requirement which can be evaluated by
comparing different policy languages.

Extensibility: Enabled by the cloud computing paradigm, new services and applica-
tion scenarios together with novel privacy and data handling requirements emerge
continuously. Thus, a privacy policy language needs to be extensible such that it
can be easily adapted to the individual and novel requirements of new deployment
domains. The extent of extensibility of a policy language is a qualitative require-
ment which can be evaluated through analysis of the concept and implementation
of a policy language.

Incremental Deployment: A new privacy policy language should be conceptually
compatible with already existing privacy policy languages to integrate legacy de-
ployments and ease transition. Whether a policy language supports incremental
deployment or not can be qualitatively evaluated by analyzing the underlying de-
sign of the policy language.

Matching: A privacy policy language must support the matching between the pri-
vacy expectations of a user and the data handling properties cloud providers offer.
To this end, cloud providers must be able to specify what their cloud nodes tech-
nically provide, which legal principles apply, as well as what the providers’ own
policies are based on individual business decisions. Also the question of whether
a policy language supports the matching of expectations against properties can be
qualitatively evaluated by studying the language’s specification.

4.2.1.3 Analysis of Privacy Policy Languages

In this section, we analyze (privacy) policy languages from related work with respect
to our scenario and requirements. We summarize our analysis in Table 4.1.

XACML [Oas13] is a completely XML-based language for specifying access control
policies. XACML is extensible to new requirements and use cases but has an exces-
sive storage footprint which requires applying separate compression [Gee05]. Addi-
tionally, XACML has no support for triggers (cf. Section 4.2.1.2). PPL [BNP10] and
A-PPL [AEÖ+14,CDG+13] extend XACML with support of triggers, environmental
context, credential-based access, and a matching procedure.

Likewise based on XML, PERFORM [DUM10] targets the scenario of pervasive
computing. Policies in PERFORM specify actions as request/response pairs limited
by constraints. Its awareness of environmental context affords a good basis for
expressiveness. However, it does not support triggers thus, e.g., not supporting
access notifications or specification of data deletion at a user-defined point in time.

110 4. Data Handling Requirements-aware Cloud Infrastructure

storage
footprint

efficiency expres-
siveness

extensibility deployment matching

XACML[Oas13] + extensions �� - � � �� �
PERFORM [DUM10] �� - �� - � -
Rei [KFJ03] � - �� � � -
Garcia-Morchon [GW10] � - �� - � �
Ali [ABP09] �� - � - � �
OSL [HPB+07] �� - �� - �� �
C2L [PJ12] �� �� �� - � �
S4P [BMB10] �� - - - - �
FLAVOR [TM11] �� - � - �� �

Table 4.1 Comparison of existing privacy policy languages. A language fulfills (�), partially
fulfills (��), or does not fulfill (�) a requirement. We use “-” to denote that we cannot judge
to which extent a policy language fulfills a requirement based on the information available.

Rei [KFJ03] also targets pervasive computing and supports specification of rights,
prohibitions, obligations, and dispensations. The expressiveness of policies in Rei
profits from awareness of environmental context but lacks support for triggers thus
facing the same limitations as PERFORM in our scenario. Furthermore, Rei does
not consider the size of resulting policies as an optimization goal.

Garcia-Morchon and Wehrle [GW10] propose an access control policy language for
medical sensor networks. The resource constraints in this environment demand for
a concise representation of policies. To this end, they specify policies in Boolean
formulas represented as binary trees and efficiently stored in byte-level encoding.
However, they explicitly focus on medical contexts which limits the generalizability
of their language. Furthermore, matching of user expectations with provider offers
is unnecessary for their scenario but paramount in more general scenarios.

Ali et al. [ABP09] describe an obligation language and a framework to enable
privacy-aware service-oriented architectures. Their language supports the specifi-
cation of obligations, can evaluate the environmental context, and supports time- as
well as event-based triggers. However, it misses a mechanism to match offers of a
node with expectations formulated by a user [ABP09], lacks an efficiency analysis,
and does not consider a storage efficient representation of the formal language.

OSL [HPB+07] is a policy language for distributed usage control. In contrast to
other languages, OSL partially supports the enforcement of policies by translating
them into the digital rights management (DRM) languages ODRL and XrML and
then employing existing enforcement mechanisms. However, its performance remains
unclear and no attention is paid to the storage footprint.

C 2L [PJ12] is a highly specialized language for restricting the location and migration
of virtual machines (VMs) in the context of cloud computing. A typed spatiotem-
poral logic enables enforcement of policies by rerunning the evaluation engine on
the history of placement and migration of VMs. Hence, users are limited to a pos-
teriori checking if a given history contradicts against a policy. Furthermore, the
language is limited to the context of VM placement and thus does not provide suf-
ficient expressiveness for the various applications in the complete cloud computing
landscape. Finally, C 2L does not consider the matching of user expectations with
provider offers.

4.2. CPPL: A Compact Privacy Policy Language 111

S4P [BMB10] focuses on matching privacy policies of users to those of service
providers. To this end, S4P policies are specified in a first-order language. Poli-
cies of users and service providers are then compared using formal methods. This
approach aims at realizing functionality and does not consider minimizing storage
or processing overheads.

FLAVOR [TM11] focuses on legal rules which define consequences for infringements.
To this end, FLAVOR does not only specify which policies a system should adhere
to, but also which actions have to be taken if a posteriori verification detects a
policy breach. FLAVOR’s logic expressions enable specification of obligations with
deadlines, triggers for external events, and context information. However, while
focusing on a posteriori verification, it does not consider matching of expectations
and offerings of a service provider. Moreover, this approach does not address the
storage overhead of policies.

To conclude, our analysis shows that no existing policy language supports all re-
quirements for fine-grained privacy protection in the context of cloud computing.
Most notably, existing languages either do not achieve a sufficiently small storage
size to enable policies on a per-data item level or do not provide the necessary expres-
siveness and extensibility to cope with future, yet unknown privacy requirements.
Furthermore, most existing works do not consider the importance of matching ef-
ficiency although this determines applicability for various upcoming scenarios, e.g.,
in the context of the IoT and big data.

4.2.2 Design of a Compact Privacy Policy Language

In the cloud computing landscape, fine-grained user-centric privacy policies are a
practical and much-needed asset to achieve a DHRs-aware cloud stack. The main
goal of our work is to fill the identified gap between the requirements for privacy
policies (Section 4.2.1.2) and existing approaches (Section 4.2.1.3): We require a
high level of expressiveness, the possibility to match users’ expectations against data
handling properties offered by cloud providers, and a minimal storage footprint at
the same time.

To achieve this goal, we present CPPL, a compact privacy policy language which
relies on a two-step approach: First, a privacy policy is specified in a human-readable
representation (as in related work). Here, we derive a policy representation that is
as expressive as related work. In a second, novel step, we compress this policy by
taking advantage of flexibly specifiable domain knowledge. Notably, any further
processing of the privacy policy, e.g., interpretation at nodes in the cloud, takes
place directly on the compressed policy.

We depict an overview of our core design idea behind CPPL in Figure 4.4. Here, a
user defines her privacy policy in a human-readable representation (Section 4.2.2.1),
possibly using a GUI or an editor. Our policy compressor uses this representation
and a set of domain parameters to derive the compressed policy (Section 4.2.2.2).
These domain parameters define a CPPL dialect for a specific application scenario
or deployment domain and define the variables and values that can be expressed

112 4. Data Handling Requirements-aware Cloud Infrastructure

Figure 4.4 The core idea of CPPL is the compression of privacy policies by incorporating and
leveraging flexibly specifiable domain knowledge.

in a privacy policy. Each dialect is specified by a central entity, e.g., a standard-
ization organization. When interpreting a policy (Section 4.2.2.3), CPPL uses the
compressed policy, the domain parameters, and node capabilities of the cloud node
in question to evaluate whether the policy can be fulfilled by this node.

Consequently, the design of CPPL has three parts: (i) specification of policies,
(ii) compression of policies, and (iii) interpretation of policies. We discuss our design
for these three parts in the following and provide a complete example of CPPL’s
specification, compression, and interpretation of policies in Appendix A.1.

4.2.2.1 Specification of Policies

For our specification of policies, we derived a common pattern from the privacy pol-
icy languages in related work: Policies typically specify rules that list allowed (or
forbidden) actions and these individual rules can be combined using conjunction or
disjunction. Hence, CPPL allows users to express their privacy policies as policy
atoms (e.g., location = "DE") which are connected by Boolean algebra. Our use of
Boolean algebra is deliberate since it enables even less technically proficient users to
determine the semantical meaning of a policy and affords for fast interpretation of
a policy. However, CPPL is not inherently bound to this representation of privacy
policies as Boolean formulas and can conceptually also work with other policy rep-
resentations, e.g., XACML [Oas13] and its derivates. Hence, with CPPL we do not
propose a completely new policy language (in terms of what can be expressed) but
rather show how to combine the concepts of existing policy languages with domain
knowledge to achieve large policy size reductions.

We depict an example of CPPL’s human-readable policy specification in Listing 4.1.
In this example, data must not be stored at CompanyA, access to data must be logged,
data has to be deleted after a certain point in time, backups have to be kept for one
month, and the replication factor must be at least two. Furthermore, data has to
be stored in Germany or, alternatively, in encrypted form in the EU.

As the foundation for deriving CPPL’s human-readable policies, we provide the
complete underlying formal grammar of our policy language in Listing 4.2. In the
following, we describe the important parts of this specification which later allow us
to derive an efficient policy compression by incorporating domain knowledge.

4.2. CPPL: A Compact Privacy Policy Language 113

1 provider != " CompanyA "
2 & log_access = true
3 & deleteAfter (1735693210)
4 & backupHistory ("1M")
5 & replication >= 2
6 & (location = "DE" | (location = "EU" & encryption = true))

Listing 4.1 Example of CPPL’s human-readable policy that imposes restrictions on the storage
provider, location, and lifetime. It also enforces logging, backups, replication, and, depending
on the location, encryption of the corresponding data item.

1 R → variablebool ; ! variablebool
2 R → variablenumber = valuenumber ; variablenumber �= valuenumber ;
3 variablenumber < valuenumber ; variablenumber ≤ valuenumber ;
4 variablenumber > valuenumber ; variablenumber ≥ valuenumber
5 R → variablestring = valuestring ; variablestring �= valuestring
6 R → variableenum = valueenum ; variableenum �= valueenum
7 R → function(parameter1, ..., parameterN) ; ! function(parameter1, ..., parameterN)
8 F → R ; ! F ; (F) ; F & F ; F | F

Listing 4.2 In CPPL’s policy grammar, relations specify a comparison between variables and
values, functions add support for triggers, and Boolean interconnections of these relations and
functions (R) create a policy formula (F).

Policy Atoms. Each CPPL policy is constructed out of different atoms, such as
variables, relations, and functions. Properly differentiating between the different
individual atoms of a policy enables efficient compression later on.

Variable Types: To allow for the expression of a wide range of requirements, CPPL
uses variables of different types. We differentiate between Booleans, numeric vari-
ables (integers and floats of different sizes), and strings. To ease compression of vari-
ables with a predefined set of values, we additionally support enumerations, i.e., a
set of values with the same type. For example, ["DE", "FR", "US", "GB", "NL",
"EU"] is an enumeration of type string which encodes a set of country identifiers.

Relations: To express single requirements within a policy, CPPL allows to compare
variables using relations. Relations hence afford the comparison of required (as spec-
ified in the policy) and actual environmental context, i.e., the properties provided
by a cloud node. Which relations can be used to compare variables depends on
the variable type. CPPL allows to compare Boolean variables using negation (!),
string variables by testing for equality (=, �=), and additionally supports ordering
(>, ≥, <, ≤) for numeric variables. A relation evaluates to true if and only if the
comparison evaluates to true.

Functions: Requirements with very flexible input, such as event-based triggers (e.g.,
notification upon data access) and time-based triggers (e.g., performing backups
within specific time frames or requiring data deletion at a specific point in time),
cannot be expressed using relations in a scalable fashion. Hence, we support the
specification of functions that allow general purpose computations to derive whether
a node supports the requirements stated by a user. In a CPPL policy, functions
consist of a function name and a list of parameters (e.g., backupHistory("1M")).

114 4. Data Handling Requirements-aware Cloud Infrastructure

Similar to relations, a function evaluates to true if and only if the node supports the
expectation given by the function and its parameters.

Policy Formulas. We construct privacy policies out of the above relations and
functions by interconnecting them with Boolean operations, i.e., and (&), logical or
(|), and negation (!). To allow for concise formulas and increase readability, distinct
parts of a policy can be grouped together with (nested) brackets.

Domain Parameters. We, in contrast to related work, incorporate domain knowl-
edge to compress policies. That is, CPPL can be parameterized to the individual
use case through domain parameters, i.e., which variables are available, which val-
ues they can take, and which functions (and parameters for a specific function) can
be utilized. Such domain specifics heavily depend on the individual use case. For
example, the available variables might differ between a cloud-only and an IoT de-
ployment. Together, domain parameters form a CPPL dialect which is provided by
a central entity, e.g., a standardization body, for each use case.

For each variable, the domain parameters specification states name and type, e.g.,
Boolean, string, or int32. Similarly, the specification also lists the available functions
together with the types of the functions’ parameters. For enumerations, i.e., a set of
values with the same type, the specification lists all possible values. CPPL dialects
help us to realize three essential properties of policy languages: First, they provide
users with a list of all possible types of DHRs they can specify in their privacy
policies for a certain deployment domain. Second, they enable verification of a
policy, i.e., that it contains only valid variables and values. Third, they allow to
extend the policy language to new demands in existing or new use cases. Notably,
domain parameters are not defined by individual users and we expect them to stay
rather static, occasionally being superseded with an updated version similar to the
introduction of new versions of network protocols or other standards.

4.2.2.2 Compression of Policies

The centerpiece of our approach is the compression of privacy policies by taking
advantage of specifiable domain parameters. To achieve a high compression ratio,
we introduce the domain parameter specification to be able to incorporate domain
knowledge into the compression step. The domain parameter specification lists the
available variables, functions, and values in a well-defined order. This enables us
to replace variable and function names with a numerical identifier for their posi-
tion in the domain parameter specification. We can employ a similar approach to
considerably reduce the size of enumerations.

A compressed CPPL policy consists of four different parts as illustrated in Figure
4.5: (i) the policy header stores an identifier for the domain parameter specification
the policy relates to, (ii) the formula stack stores the Boolean operations connecting
the relations of a formula, (iii) the relation stack encodes relation information, and
(iv) the variable stack stores the numerical variable and function identifiers as well
as actual values and parameters. With this separation, we can leverage redundancies
in privacy policies for compression. Most notably, if a relation, variable identifier,

4.2. CPPL: A Compact Privacy Policy Language 115

Figure 4.5 A compressed CPPL policy consists of a header and three stacks which reference
each other to leverage redundancies for compression.

or value is used more than once in a policy, we need to store it only for the first
occurrence and can reference it subsequently. In the following, we describe the
encoding and compression of the parts of compressed CPPL policies in more detail.

Policy Header. To achieve a high compression rate, CPPL makes heavy use of
information derived from the domain parameters defined in the used CPPL dialect.
Hence, it is necessary to know a policy’s CPPL dialect when interpreting the re-
sulting compressed policy. As we cannot assume that this is always implicitly given
by the context, we explicitly add the CPPL dialect in a 16 bit identifier field. As
we strive for space efficiency, CPPL’s policy header contains no further informa-
tion. Especially, we completely waive length fields (which are common for bit level
encodings) as they introduce constant space overhead and reduce flexibility by con-
straining the overall possible policy size. Instead, we encode lengths using special
symbols and implicit knowledge derived directly from the encoded policy.

Formula Stack. We introduce a formula stack to encode interconnection of rela-
tions, i.e., logical operations, evaluation order as given by brackets, and references to
relations. The overall goal of CPPL is to do this as space efficient as possible while
still allowing for fast interpretation of the underlying policy. To save the space for
an explicit encoding of the evaluation order, we rely on polish notation in the for-
mula stack. While this automatically provides the correct evaluation order, we still
require a space-efficient encoding for combining references to relations using logical
operations. To achieve this goal, we follow two paths: (i) we reduce the number of
logical operations that need to be encoded in the formula and (ii) we minimize the
space required for referencing relations.

We reduce the space for encoding logical operations by deferring the handling of
negations to the relation stack through De Morgan’s theorems [CCM10]. Thus, we
only need to differentiate between and and or, which can be encoded with only
one bit. Alternatively, we could employ logic synthesis approaches for hardware
circuit design [Mic94] to minimize the size of the Boolean formula or optimize its
representation for fast execution. Such an alternative approach, however, would
considerably increase the effort required for compressing a privacy policy.

To reduce the space required for referencing individual relations, we order the re-
lation stack according to the position of relations in the formula stack. Hence, we
can omit references to relations in the formula stack and simply refer to the next
relation on the relation stack. While this allows us to reference relations very space
efficiently, it prevents referencing one relation more than once (and thus save space
by leveraging redundancies). To overcome this limitation, we introduce the concept

116 4. Data Handling Requirements-aware Cloud Infrastructure

of a redundant relation which allows referencing a relation that has already been used
in the same formula. The address (or offset) of the referenced relation is specified
in a fixed-size bit sequence8.

Based on these optimizations, we only need to encode and, or, next relation, and
redundant relation in the formula stack, which can be encoded with two bits. How-
ever, this does not allow us to signal the end of the formula stack (as discussed
above, we refrain from using length fields as this would increase the policy length).
To still be able to signal the formula stack’s end, we introduce an additional bit to
the redundant relation symbol to signal the end of the formula stack. Consequently,
this adds an overhead of one bit to redundant relation identifiers (which in most
scenarios is the least used of all four symbols).

Relation Stack. Similar to the formula stack, the relation stack encodes the in-
terconnection of variable identifiers and variable values through relations. We use
three bits to encode the relation types =, �=, <, ≤, >, ≥, = True, and = False.
Each relation type is followed by two respectively one (for = True and = False)
next variable and/or redundant variable symbols encoded in a single bit each. As
for redundant relations, we add a fixed-size address to a variable on the variable
stack after the redundant variable bit. In contrast to the formula stack, we do not
explicitly signal the end of the relation stack as we can directly derive the number
of relations on the relation stack from the formula stack.

Variable Stack. The variable stack encodes the variables (including functions) used
in a CPPL policy. Each variable is represented by an encoding of its type followed
by a type-dependent representation of the variable value. To encode the variable
type, we differentiate between variable identifiers (where values are instantiated by
the cloud node interpreting a policy later on) and actual values (where values are
already defined in the policy). We can derive all possible variable types from the do-
main parameter specification and hence encode, i.e., enumerate, variables according
to their order in the specification. Hence, the number of bits required for encod-
ing variable types depends on the domain parameter specification. A reasonable
set for variable types, similar to major programming languages, contains Booleans,
integers (8 bits to 64 bits, signed and unsigned), doubles, strings, enumerations, and
functions. Additionally, we reserve one encoding for variable identifiers, i.e., a ref-
erence to a variable in the domain parameter specification that will be instantiated
by a cloud node when interpreting the policy. Hence, four bits suffice to distinguish
between a sufficient amount of different variable types and variable identifiers.

The encoding of a variable type is followed by a type-dependent representation of
the variable value as described in the following (encoding for new variable types can
be easily deduced). First, variable identifiers are encoded as numbers as given by
their order of appearance in the domain parameter specification. The number of
bits required for this is determined by the number of variables in the specification.
Boolean values are encoded as a single bit, integers and floats are encoded with

8We chose a fixed-size length to save overhead for a length field. This fixed-size length constitutes
a trade-off between the number of relations that can be addressed and the space required for
encoding references. As this trade-off is domain specific, we allow configuring the fixed-size length
in the domain parameter specification.

4.2. CPPL: A Compact Privacy Policy Language 117

their respective bit size, and strings are encoded as null-terminated ASCII values.
When encoding numbers, we automatically use the smallest possible representation,
e.g., a 32 bit integer will be automatically casted to an 8 bit integer if possible.
For enumerations, we derive the encoding from the position in the sorted list of
possible values for this enumeration. The variable type of an enumeration can be
derived from the identifier of the variable which the value in the enumeration is
compared to. Finally, we encode functions by numbering their positions in the
specification. Following the identifier for the function, we can directly encode the
function’s parameters, as their types are already defined in the specification.

Similar to relations in the relation stack, the number of variables in the variable
stack can be derived from information in the relation stack. Hence, we do not need
to encode the end of the variable stack and, thus, the end of a policy.

4.2.2.3 Interpretation of Policies

Once a CPPL policy has been compressed, it can be attached to data that is sent
to cloud nodes. To this end, the policy can either be directly encoded together with
the data, e.g., in a JSON-object (cf. Section 5.2.2.3) or transmitted alongside the
data, e.g., by including it in individual network packets (cf. Section 4.2.4). Each
cloud node that receives the data together with the annotated policy interprets the
policy, i.e., compares its own node capabilities to the requirements specified in the
policy. We first discuss these node capabilities in more detail before we present the
actual process of policy interpretation.

Node Capabilities. The goal of privacy policy languages is to formulate require-
ments on the handling of data. This is predominantly achieved by comparing re-
quirements to environmental context and supported triggers, i.e., the capabilities of
a specific cloud node [PM11]. Only if the capabilities of a cloud node match the re-
quirements formulated by the user, this node is allowed to process the corresponding
data. Essentially, node capabilities denote for each variable name in a domain pa-
rameter specification the values supported by this specific node. Furthermore, node
capabilities specify for each function defined in the domain parameter specification
if it is supported by this node. If a cloud node supports a function in general, the
node uses a small script or binary executable to check if it supports the parameters
specified for this function as well.

Policy Interpretation. When interpreting a policy, i.e., deciding whether a cloud
node supports the requirements expressed in this policy, we replace the variable
identifiers in the policy with the values listed in the node capabilities. To check if a
node supports the functions in the policy, we extract the parameters and evaluate
their support using the corresponding implementation of these functions of this node
(see above). Finally, we evaluate the individual relations and then the complete
Boolean formula. A node is eligible to process the data if and only if the Boolean
formula evaluates to true.

During policy interpretation, we apply logical operations in the order given by the
formula stack. This is possible since the polish notation eliminates all brackets.

118 4. Data Handling Requirements-aware Cloud Infrastructure

When iterating over the formula stack to find the start of the relation stack, we
sequentially push the operations onto a stack, obtaining reverse polish notation for
the actual execution. Furthermore, we cache the result of each relation’s interpre-
tation to save processing time for redundant relations. Notably, a policy does not
necessarily define an unambiguous handling of data, i.e., there may be more than
one satisfying assignment. To cope with this challenge, we additionally employ back-
tracking based on cached evaluation results to derive the actual variable assignment
that has to be adhered to by the cloud node.

4.2.3 Evaluation

To assess the feasibility and applicability of our approach, we implemented CPPL
in C++ based on the Boost libraries. We utilize Flex++ and Bison to automati-
cally generate the scanner respectively parser to process CPPL’s textual policies.
Furthermore, we realize the domain parameters and node capabilities specification
using JSON and parse them with jsoncpp.

We first perform synthetic benchmarks to get a thorough view of the performance
and scalability of CPPL and then realize policies for real-world scenarios which
enables us to compare CPPL to related work. Based on this, we study the appli-
cability of CPPL in two cloud-based use cases: (i) storing millions of IoT messages
and (ii) matching thousands of policies when performing machine learning in the
context of big data.

4.2.3.1 Influence Factors on CPPL’s Performance

Performance and scalability of CPPL are influenced by the policy size and the volume
of domain parameters in the domain parameter specification. To thoroughly quantify
both the influence on performance and scalability, we perform synthetic benchmarks
for which we utilize a local test setup that consists of a desktop-grade machine (Intel
i7 870, 4 GB RAM, Ubuntu 14.04). For each measurement point, we performed
100 runs and report the mean value with 99 % confidence intervals. We do not
consider the overhead for initializing CPPL (in the order of 1.2 ms for compression
and matching), e.g., for loading and parsing the domain parameters specification,
as this has to be performed only once when the system is started.

Influence of Policy Size

To evaluate the influence of the policy size on the storage footprint, compression
runtime, and matching runtime, we perform measurements with fixed domain pa-
rameters specifying 100 Boolean, integer, and string variables, each. We construct
policies with up to 150 relations of the same variable type, allowing up to 50 (integer,
strings) and 2 (Boolean) actual values, respectively. First, we explicitly evaluate a
scenario without introducing redundancies for variables or relations (Relations 1 to
50). To study the impact of redundant variables, we then repeat already used vari-
able values without repeating relations (Relations 51 to 100). Finally, to also study

4.2. CPPL: A Compact Privacy Policy Language 119

Figure 4.6 When increasing the policy size, redundant variables, relations, and integer opti-
mization improve compression and hence reduce storage footprint.

Figure 4.7 Compression runtime scales linearly with increasing policy sizes. Strings have a
slightly higher increase in runtime.

the effect of redundant relations, we duplicate the first 50 relations (Relations 101 to
150). We use two integer sizes to evaluate CPPL’s effect of automatically downsizing
integers. While the domain parameters always specify integers with 32 bit, we use
values whose representation either requires 32 bit or only 8 bit in the policy.

We first study the resulting storage footprint of a compressed CPPL policy in Fig-
ure 4.6. Without the possibility to leverage any redundancies, CPPL’s policy size
scales linearly, e.g., when considering a 32 bit integer from 9 byte for 1 relation to
364 byte for 50 relations. When introducing redundant variables, we observe a com-
pression gain for strings (ratio 3.53) and 32 bit integers (ratio 1.93). In contrast,
8 bit integers and Booleans do not profit from redundant variables as the identifier
for redundant variables would also consume 8 bit. Redundant relations allow for a
further compression gain regardless of the variable type, e.g., by a ratio of 2.31 for
32 bit integers. Finally, the smaller storage overhead of 8 bit integers compared to
32 bit integers highlights the advantage of CPPL’s automatic integer downsizing.

Next, we show in Figure 4.7 the compression runtime, i.e., the time for transforming
CPPL’s textual policy into its compressed representation, depending on the policy
size. Here, we observe that compression runtime scales linearly with increasing policy
sizes. More specifically, compression runtime increases from 68 μs for 1 relation to
between 418 μs and 431 μs (502 μs for strings) for 150 relations. To put these numbers

120 4. Data Handling Requirements-aware Cloud Infrastructure

Figure 4.8 Larger policies result in an increased matching runtime. Leveraging redundancies
helps to reduce matching runtimes for strings.

Figure 4.9 Increasing the number of domain parameters (and hence expressiveness) logarith-
mically increases the storage footprint.

into perspective, CPPL is thus able to compress 1993 to 14 754 policies per second
(depending on the policy size). Strings show a slightly higher overhead due to
slower encoding and comparison in the redundancy search. Redundant variables or
relations do not noticeably influence compression runtime.

Finally, we show the matching runtime, i.e., the time for matching a compressed
CPPL policy against node properties, in Figure 4.8. Matching (which is performed
in the backend and thus typically more often than compression), happens faster than
compression with a linear increase in runtime for growing policy sizes. Without the
possibility to remove redundancies, the matching time for strings increases from 9 μs
for 1 relation to 50 μs for 50 relations. In contrast, the matching time for Booleans
increases from 7 μs for 1 relation to only 21 μs for 50 relations. Matching times for
integers are slightly higher than for Booleans. Especially for strings, we observe a
benefit of removing redundancies, reducing processing for strings for 150 relations to
58 μs. Consequently, CPPL is able to process 17 126 to 134 048 policies per second
on a desktop-grade machine.

Influence of More Comprehensive Domain Parameters

We now evaluate the impact of more comprehensive domain parameters, i.e., a larger
variety of variables that can be used in a policy, on policy size and processing time.

4.2. CPPL: A Compact Privacy Policy Language 121

Figure 4.10 CPPL shows a tendency for only a slight linear increase in compression runtime
for a growing amount of domain parameters.

Figure 4.11 CPPL’s matching runtime does not depend on the amount of domain parameters
and hence stays constant at a very low level, resulting in a large throughput.

To this end, we use a static CPPL policy consisting of one Boolean, one integer,
and one string relation. For each of these variable types, we increase the number of
domain parameters from 1 up to 150. Here, we do not differentiate between different
integer types as the actual values only appear in the (fixed) policy.

We show the resulting storage footprint in Figure 4.9, where all three lines lie on top
of each other, i.e., only the topmost line is visible, because all variable types exhibit
the exact same behavior as only the encoding of variable identifiers is impacted by an
increase in the number of available domain parameters. In this case, CPPL requires
more bits to encode variable identifiers, which is not affected by the variable type.
We observe an increase from 19.63 byte for 1 variable definition to 21.88 byte for 150
variable definitions. More specifically, domain parameters that specify n variables
require �log2(n)� bits to encode one identifier in the variable stack.

When considering the influence of an increasing amount of domain parameters on
the compression runtime as shown in Figure 4.10, we observe a tendency for a linear
runtime increase. More precisely, the compression runtime increases from 59 μs for
1 variable to 70 μs for 150 variables. This results in approximately 14 288 to 17 004
policy compressions that CPPL can perform per second.

Figure 4.11 shows that the matching runtime is not influenced by an increasing set
of domain parameters (independent from the variable type) as tens to hundreds

122 4. Data Handling Requirements-aware Cloud Infrastructure

Figure 4.12 When considering real-world privacy policies, CPPL considerably reduces storage
footprint compared to related work and generic compression methods.

of domain parameters can efficiently be cached in memory. All observed matching
runtimes are in the order of 12 μs to 13 μs. Consequently, CPPL is able to match
76 453 to 85 251 policies per second in this setting.

4.2.3.2 Comparison to Related Work

To prove the feasibility of CPPL, we also evaluate CPPL on real-world policies
taken from state-of-the-art related work in the context of cloud computing. To this
end, we were able to locate six XML-based policies, namely four A-PPL policies
(one limiting access based on location, purpose, and time conditions [AEÖ+14]; one
logging access, deletion, and sent operations; one specifying a deletion date; and one
defining a deletion date and notification on deletion [CDG+13]) and two PPL policies
(one specifying logging of three different actions and one extending the former with
a deletion date [PPL14]).

Resulting Policy Sizes

First, we analyze the required storage size for real-world policies both for CPPL and
related work. To this end, we compare the original XML representation (without su-
perfluous whitespace characters) of the policy in A-PPL and PPL, respectively, with
equivalent CPPL policies. As CPPL uses a compressed format, we also applied zlib
and brotli, two state-of-the-art compression libraries, to the policy representations
from related work to also compare against generic compression methods.

We depict the resulting policy sizes in Figure 4.12. Overall, zlib and brotli achieve
a clear compression gain, however, CPPL achieves by far the smallest policy size.
For large policies, zlib and brotli achieve a compression ratio of 2.18 up to 5.49
while CPPL reduces the size of the policy by a ratio of 27.10 up to 112.47. For
smaller policies, zlib and brotli perform worse, achieving a compression ratio of
only 1.63 up to 1.94 while CPPL still manages to achieve a reduction by a ratio of
9.97 up to 29.63. In absolute numbers, CPPL is able to reduce A-PPL LimitAccess
from 182 byte to 18.25 byte and PPL Log from 956 byte to only 8.5 byte. As we
show in Section 4.2.3.3 in the context of storing IoT data in the cloud, this results

4.2. CPPL: A Compact Privacy Policy Language 123

Figure 4.13 The real-world matching runtimes for IoT and cloud class devices show that even
on IoT devices, CPPL can perform thousands of matchings per second.

in an enormous reduction of the overall required storage space. Furthermore, and in
contrast to generic compression methods such as zlib and brotli, CPPL affords
for policy evaluation directly on the compressed policy representation without the
need for decompressing the policy first.

Real-World Performance

Based on these real-world policies, we evaluate CPPL’s performance on commodity
cloud infrastructure as well as on IoT devices. For the evaluation of CPPL on
cloud infrastructure, we use an Amazon Web Services EC2 64-bit instance of type
m4.large [AWS18b] running Ubuntu 14.04 as the operating system. To measure the
performance of CPPL on IoT devices, we utilize a Raspberry Pi (Model B Revision
2.0) with a 700 MHz ARM11 CPU, 512 MB of RAM, and running Raspbian 8.0 as
the operating system.

The evaluation results in Figure 4.13 show that a cloud server can perform more than
52 056 policy matchings per second for our largest real-world policy. For smaller poli-
cies, this increases to more than 67 024 matchings per second. To put these numbers
into perspective, even Dropbox had on average less than 20 000 insert/update re-
quests per second in June 2015 [Dro15]. For IoT devices, the matching rate still
ranges from 2632 up to 3155 matchings per second. This is more than sufficient to
process all messages in an actually deployed IoT platform (cf. Section 4.2.3.3), with
a largest observed throughput of 149 messages per second. Thus, we enable policy
awareness for cloud-based scenarios ranging from the data collection by IoT devices
to the processing and storage of data in the cloud.

4.2.3.3 Applicability of CPPL

To demonstrate the applicability of per-data item policies as a foundation for a
DHRs-aware cloud stack in general and CPPL in specific, we analyze the policy-
induced storage overhead for data measurements in the cloud-based IoT and inves-
tigate the impact of policy support for the runtime of machine learning approaches
in the context of cloud-backed big data.

124 4. Data Handling Requirements-aware Cloud Infrastructure

Figure 4.14 CPPL considerably reduces the storage footprint of real IoT data in the cloud
compared to privacy policies from related work.

Storage Overhead in the IoT

The IoT not only causes a massive growth in the amount of transferred data in the
Internet, e.g., up to expected 40 000 exabytes in 2020 compared to 130 exabytes in
2005 [GR12], but also substantially increases the diversity of data sources [BWHT12]
and the granularity of reported data [HHCW12]. Hence, the question arises whether
it is also feasible to attach per-data item policies to IoT data when sending it to the
cloud, where it is then stored and processed.

To study the impact of per-data item policies on IoT data in the context of cloud
computing, we sample frequency and size of real IoT data and analyze the storage
overhead of attaching privacy policies to it. We collected real data of IoT devices
from the API of dweet.io [Bug18], a cloud-based data platform for the IoT. Our
dataset, which we collected over a period of 92 hours, consists of 18.41 million IoT
messages originating from 7207 distinct devices. The sizes of the IoT messages we
collected range from 72 byte to 9.73 KB with a mean size of 394 byte. Although this
data is publicly available through dweet.io’s API, we took appropriate measures to
protect the privacy of people potentially monitored by the IoT devices. To this end,
we only stored the identifier of the device and the timestamp of each data message.
Furthermore, we sampled only one message per device to derive a representative
message size and solely stored the resulting message size (not the payload).

Figure 4.14 shows the cumulative distribution function of IoT message sizes with
(solid lines) and without (dashed line) attached per-data item policies. We uniformly
randomly assign one of the policies from related work (cf. Section 4.2.3.2) for each
IoT message and compare originally uncompressed policies to policies compressed
with zlib and brotli as well as CPPL. These results show that CPPL adds only
a negligible storage and transmission overhead compared to data without per-data
item policy, while generic compression algorithms and especially uncompressed poli-
cies induce considerably higher storage overheads. In total, storing all 18.41 million
collected IoT messages without any attached policies requires 4.39 GB of storage
space. This increases to only 4.68 GB when attaching CPPL policies, 7.86 GB and
8.42 GB for brotli and zlib, respectively, and a total of 16.37 GB when using un-
compressed policies from related work. As these numbers correspond to less than

4.2. CPPL: A Compact Privacy Policy Language 125

Figure 4.15 Our study of the impact of CPPL on machine learning (UCI Adult dataset [Pla99])
shows that CPPL’s share of the runtime becomes negligible for larger data sets.

four days of IoT device usage, this clearly highlights the necessity for space efficient
privacy policy languages and the reasonable storage overhead of CPPL.

Policy Matching for Big Data

The large storage space provided by cloud computing is especially interesting for
machine learning in big data which benefits from larger datasets for training models
to increase their accuracy [Loh12]. Per-data item policies can increase the willingness
of individuals to contribute their data as they enable users to stay in control over
their data. However, policies lead to additional processing overhead to determine if
a policy allows usage of a specific data item for the desired application.

To investigate the performance of CPPL in this application scenario, we measure
the overhead of policy matching when it is used to determine if data items can
be used for a machine learning-based study. We compare execution times of the
training phase of the support vector machine LIBSVM [CL11] with the time required
to process CPPL policies for this input data (we uniformly randomly assigned one
of the policies from related work to each input and considered policy initialization
overhead for the first occurrence of each domain parameter specification).

Figure 4.15 shows the share of the runtime that is required for policy processing
for the different numbers of input records of the nine different UCI Adult datasets
[Pla99]. That is, the remaining share of the runtime is required for the actual
training of the support vector machine (SVM). For a very small number of records,
processing of policies takes 10.6 % of the runtime that is required for the full process
(policy processing and training of the SVM). More specifically, policy processing
accounts for 18.9 ms while the training of the SVM requires 178.2 ms. However, with
increasing number of data records used for training the SVM, the fraction of the time
required for processing of policies considerably decreases. Considering, e.g., 32 561
data records, policy processing is responsible for only 0.6 % (377.7 ms) of the total
runtime whereas training of the SVM accounts for the other 99.4 % (59.8 s). Hence,
for larger datasets in the context of cloud-based big data, the runtime overhead
for CPPL policy processing is negligible. Thus, CPPL enables privacy policy-aware
machine learning-based approaches with almost no overhead on processing time.

126 4. Data Handling Requirements-aware Cloud Infrastructure

4.2.4 Summary and Future Work

We presented CPPL, a compact privacy policy language as a foundation for our
vision of a DHRs-aware cloud infrastructure. CPPL allows users to specify their
privacy requirements regarding routing, processing, and storage of data when it is
outsourced to the cloud in a two-step approach: The user first defines a privacy policy
in a human-readable representation (as with traditional privacy policy languages).
Then, in a second, novel step, CPPL compresses this policy, thereby optimizing the
resulting policy size down to the bit level. To this end, CPPL takes into account the
specific deployment domain and extensively utilizes domain knowledge to further
reduce policy sizes. Our concept of domain parameters allows for easy adaption to
new, even yet unforeseen use cases. CPPL further distinguishes itself from related
work by its focus on reducing policy sizes and processing overheads.

In the following, we briefly discuss how CPPL achieves the requirements that any
privacy policy language in the context of cloud computing must fulfill (cf. Section
4.2.1.2). Our benchmarks show that CPPL indeed achieves a minimal storage foot-
print, in which we significantly outperform related work. More specifically, CPPL
reduces policy sizes by up to two orders of magnitude. Furthermore, when con-
sidering the storage of massive amounts of IoT data, CPPL, in contrast to related
work, adds only a marginal storage overhead. At the same time, our measurements
illustrate that CPPL allows for efficient policy checking and is viable for real-world
scenarios at large scales. This is indicated by CPPL’s ability to perform tens of thou-
sands of policy matchings on a cloud server and still thousands of matchings on a
resource-constrained IoT device. Likewise, CPPL can be used to express permissible
data usage, e.g., in the context of big data.

By reformulating existing privacy policies in CPPL, we illustrate support for incre-
mental deployment, e.g., by showing that CPPL is compatible with existing policy
languages. Through our concept of cloud node capabilities in CPPL, we are able to
realize matching of users’ privacy expectations with the data handling capabilities
offered by cloud providers. With our concept of domain parameters, we address the
challenges of expressiveness and extensibility in CPPL. By combining Boolean ex-
pressions with run-time interpreted functions, we can cover all privacy requirements
that are nowadays supported by related work simply by providing fitting domain
parameters. Here, the concept of domain parameters are what makes CPPL ex-
tensible: If additional privacy requirements in one of CPPL’s application domains
emerge, CPPL can easily be extended to support these by merely updating the cor-
responding domain parameter specification. Similarly, if completely new application
domains emerge, CPPL can be effectively adapted to those by creating a new do-
main parameter specification (CPPL dialect). As we propose to perform this process
centrally, e.g., at a standardization body, we do not place any burden on users.

For future work, we mainly identify the application of CPPL in other deployment
domains. We have already shown that CPPL is viable and promising in selected
aspects of the IoT and big data. Yet, additional effort is required to show that CPPL
can be realized on embedded devices with highly constrained processing, memory,
and energy resources [HHH+17]. Furthermore, it remains to show that CPPL can

4.3. PRADA: Practical Data Compliance for Cloud Storage 127

even be integrated with (network) protocols specifically tailored to the requirements
of resource-constrained devices that build up the IoT and CPS [HHH+17].

When envisioning the Internet-wide deployment of CPPL, one extremely challenging
yet very promising avenue for future work would be the integration of CPPL into
network layer protocols to enable policy-based routing [KPPK11]. To this end,
CPPL policies could be included in the header of network layer protocols such as
IPv4 and IPv6, e.g., using the options field of IPv4 or the extensions concept of IPv6,
where reducing the size of encoded policies is important, especially considering the
severely limited space available in IPv4’s option field. Similarly, the integration of
CPPL with DNS would allow to directly address resources in a DHRs-compliant
manner, e.g., when requesting resources from a CDN. To this end, CPPL policies
could be encoded in the 253 characters available for DNS hostnames, providing
roughly 36 bytes for encoding CPPL policies, which is sufficient for encoding real-
world privacy policies (cf. Section 4.2.3.2).

When taking a legal standpoint, it would be extremely promising to apply CPPL
to allow users to express their choices regarding DHRs and privacy in general as
guaranteed by legislation such as the GDPR [GDPR16] and hence enable service
providers to automatically process and adhere to the requirements. To provide
accountability for privacy policies in this setting, e.g., to enable cloud providers to
prove which specific policy a user supplied in case of complaints or lawsuits, CPPL
could be integrated with approaches for packet authentication [HRGD08].

To conclude, CPPL realizes significant policy size reductions, which allows for per-
data item policies and thus fine-grained privacy protection in cloud computing. This
lays the foundation for realizing our vision of a DHRs-aware cloud stack. In the
following, we present how annotating data with DHRs, e.g., based on CPPL, can be
used to make a distributed cloud storage system comply with user-imposed DHRs.

4.3 PRADA: Practical Data Compliance for Cloud
Storage

Now that we empowered users to express their DHRs in an efficient manner, we can
provide cloud service and infrastructure providers with the knowledge required to
respect these requirements while delivering their service. This is especially relevant
for cloud storage systems such as distributed file systems, key-value stores, and
databases that form the foundation for cloud infrastructure with respect to the
handling of data by defining how users’ data is stored on physical storage resources.

However, despite their popularity and importance as the underlying infrastructure
for more complex cloud services, today’s cloud storage systems typically do not ac-
count for compliance with regulatory, organizational, or contractual DHRs. Instead,
the placement of data on cloud nodes is nowadays optimized with respect to relia-
bility, availability, and performance. To this end, data in cloud storage systems is
addressed using a specific key that is used to map data to cloud storage nodes, e.g.,

128 4. Data Handling Requirements-aware Cloud Infrastructure

using a hash function similar to the concept of distributed hash tables in the con-
text of peer-to-peer systems [WGR05,LGW06]. However, the cloud storage node to
which data is mapped based on its key will generally not be able to comply with the
corresponding DHRs. As a result, users nowadays have little control over compliance
with DHRs when their data is outsourced to cloud storage systems.

While the benefits for supporting DHRs in cloud storage systems are widely rec-
ognized and highly sought-after by practitioners, support for them is still limited
nowadays [Int12, WMF13]. So far, related work mainly considered the challenge of
complying with DHRs while processing data in the cloud [IKC09,BKDG13,ELL+14],
proposed approaches that solely restrict the storage location of data while ignoring
other types of DHRs [PGB11,WSA+12], or considered the cloud storage system as
a black box and hence targeted the enforcement of some, coarse-grained DHRs from
outside the storage system, e.g., by distributing data between different cloud storage
providers [PP12, WMF13, SMS13]. As a result, a practical solution for complying
with arbitrary DHRs in cloud storage systems is still missing—a situation that is
disadvantageous to both users and providers of cloud storage systems.

To overcome this limitation, we introduce PRADA, a transparent data handling
layer which sits on top of legacy cloud storage systems and empowers users to request
specific DHRs and provides operators of cloud storage systems with the necessary
technical means to comply with stated DHRs. More specifically, our core idea is
to augment cloud storage systems with one layer of indirection, which flexibly and
efficiently routes data to cloud storage nodes according to the imposed DHRs. We
demonstrate the design of our approach along classical key-value stores, while our
approach conceptually also generalizes to more advanced storage systems such as
Google’s Spanner [CDE+13], Clustrix [Clu18], and VoltDB [SW13], which are widely
used in real-world deployments. Concretely, we implement PRADA on top of the
distributed database Cassandra [LM10, Apa18a] and show in our evaluation that
complying with data handling requirements in cloud storage systems is practical in
real-world deployments such as microblogging and distributed storage of email.

Our results show that we can realize compliance with DHRs in cloud storage systems
at moderate costs. While PRADA results in a moderate increase of query completion
times, we are able to keep storage overhead constant and realize a load distribution in
the cloud storage cluster that is close to the theoretical optimum even in challenging
situations. As we show, data without attached DHRs is not impaired by PRADA.
Hence, users can choose for each piece of data whether compliance with DHRs is
worth a modest decrease in performance. PRADA realizes compliance with DHRs
when assigning data to storage nodes in a cloud storage system and thus provides
an important building block for realizing our vision of a DHRs-aware cloud stack.

4.3.1 Data Handling Requirements in Cloud Storage Systems

With the increasing demand for sharing data and storing it with external parties
[SV10], complying with DHRs becomes a crucial challenge for cloud storage systems
[WMF13]. As a foundation for developing our approach to support compliance with

4.3. PRADA: Practical Data Compliance for Cloud Storage 129

Figure 4.16 When users store data with DHRs in a cloud storage system, the provider is
obliged to store it only on those cloud nodes that fulfill the stated DHRs.

DHRs in cloud storage systems, we briefly reiterate our setting and define the scope
of our approach. Based on our analysis of DHRs (cf. Section 2.3.1), we derive a
formalization of DHRs that allows us to provide support with all possible types of
DHRs in our system. This leads us to our definition of a set of goals that must
be reached by any approach that aims at adequately supporting DHRs in cloud
storage systems. Using these goals, we study related work and discuss its relevance
for realizing practical support for complying with DHRs in cloud storage systems.

4.3.1.1 Setting

We aim at supporting compliance with DHRs in cloud storage systems. To this
end, we consider a cloud storage system that is realized over a set of diverse nodes
that are spread over different data centers [GHMP08]. To explain our approach in
a simple yet general setting, we assume that data is addressed by a distinct key,
i.e., a unique identifier for each data item, similar to the approach of distributed
hash tables that serve as a foundation for structured peer-to-peer systems [WGR05].
Key-value based cloud storage systems [DHJ+07, LM10, ÖV11, GHTC13] provide a
general, good starting point for our line of research, since they are widely used and
their underlying principles have been adopted in other, more advanced cloud storage
systems [CDE+13,SW13,Clu18]. We discuss how our approach generalizes to other,
more advanced types of cloud storage systems in Section 4.3.4.

As a basis for our discussion, we illustrate our underlying setting in Figure 4.16.
Users (private and corporate, cf. Section 2.1.3) insert data into the cloud storage
system and annotate it with their desired DHRs—as envisioned in the motivation
behind a DHRs-aware cloud stack (cf. Section 4.1.1). These requirements are in
machine-readable form, e.g., expressed using CPPL (cf. Section 4.2), and can be
parsed and interpreted by the operator of the cloud storage system. Each user of
the storage system might impose individual and varying DHRs for each single data
item inserted into the storage system.

In this setting, compliance with DHRs then has to be achieved and enforced by the
provider of the cloud storage system. Only the provider knows about the character-
istics of its cloud storage nodes and only the provider can thus make the ultimate
decision on which cloud node a specific data item should be stored. Different works
exist that propose cryptographic guarantees [IKC09], accountability mechanisms

130 4. Data Handling Requirements-aware Cloud Infrastructure

[ABF+04], information flow control [BEP+14, PSBE16], or even virtual proofs of
physical reality [RMX+15] to relax trust assumptions on the cloud provider, i.e.,
providing the client with assurance that DHRs are (strictly) adhered to. Our goals
are different: Our main aim is for functional improvements of the status quo. Thus,
these works are orthogonal to our approach and possibly can be added on top of
PRADA if users’ trust in the cloud provider alone is insufficient.

4.3.1.2 Formalizing Data Handling Requirements

We base the design of PRADA on our analysis of existing and potential DHRs (cf.
Section 2.3.1). To design for maximum flexibility and thus be able to cope with
future requirements and storage architectures, we use our analysis of DHRs as a
foundation to derive a formalized understanding of DHRs that also covers future,
yet unforeseen requirements. Such a formalization of DHRs can then be realized by
different privacy policy languages such as CPPL (cf. Section 4.2).

We distinguish different types of DHRs Ti = (Pi, fi). Here, Pi = {pi,1, . . . , pi,n}
defines all possible properties which cloud storage nodes can support for a type
of DHRs and fi(pi,l, pi,m) → {true, false} constitutes a comparison function for
two properties of the same type. This comparison function enables us to evaluate
whether properties demanded by users are supported by cloud storage nodes. Hence,
it is possible to compute the set of eligible nodes for a specified type of DHRs, i.e.,
those cloud nodes that can offer the desired properties.

A straightforward example for a type Ti of DHRs is the storage location. In this
example, the properties pi consist of all existing storage locations and the comparison
function fi tests two storage locations for equality. In a more complicated example,
we consider as DHR type Ti the security level of full-disk encryption. Here, the
properties pi range from 0 bits (no encryption) to different bits of security (e.g.,
192 bits or 256 bits), with more bits of security offering a higher security level [Bar15].
In this case, the comparison function implements ≥, i.e., all storage nodes that
provide at least the requested security level are eligible to store the data.

By combining different types of DHRs and allowing users to specify a set of requested
properties (e.g., different storage locations) for each type, we provide them with
powerful means to express their DHRs. We provide more detail on how clients
can combine different types of DHRs in Section 4.3.2.2 and how we integrate our
formalization of DHRs into Cassandra’s query language in Section 4.3.3.1.

4.3.1.3 Goals

Our analysis of real-world demands for DHRs based on legislation, business inter-
ests, and future trends (cf. Section 2.3.1) emphasizes the importance of supporting
DHRs in distributed cloud storage systems. Based on our description of the under-
lying setting (cf. Section 4.3.1.1), we identify a set of goals that any approach that
addresses the challenge of supporting DHRs in cloud storage systems has to fulfill:

4.3. PRADA: Practical Data Compliance for Cloud Storage 131

Comprehensiveness: To address a wide range of DHRs, the approach should work
with any DHRs that can be expressed as properties of a cloud storage node and
should support the combination of multiple, different DHRs. In particular, it should
support the requirements stated in Section 2.3.1 based on the formalization derived
in Section 4.3.1.2 and be able to evolve and adapt whenever new DHRs emerge.
Comprehensiveness is a qualitative goal which can be evaluated based on an analysis
of the DHRs-aware cloud storage system.

Minimal Performance Impact: Existing cloud storage systems are highly optimized
and trimmed for performance. Thus, the impact of offering support for DHRs on
the performance of a cloud storage system should be minimized. The performance
impact of supporting DHRs can be quantified by measuring the processing runtime
for the individual storage system operations.

Cluster Balance: In existing cloud storage systems, the storage load of cloud nodes
can easily be balanced to increase performance. Despite having to respect DHRs
(and thus limiting the set of possible storage nodes), the storage load of individual
cloud nodes should be kept as balanced as possible. Keeping the storage cluster
balanced is a quantitative goal which can be assessed by measuring and comparing
the load of the different cloud nodes in the storage system.

Coexistence: Likely, not all data will be accompanied by DHRs. Hence, data
without DHRs should not be impaired by the availability of support for DHRs, i.e.,
data without DHRs should be stored and handled in the same way as in a traditional
cloud storage system, especially with respect to performance. Ensuring that data
without DHRs is not impacted by offering support for DHRs is a quantitative goal
which can be evaluated by comparing the processing runtime for data without DHRs
against those on an unmodified system.

4.3.1.4 Related Work

We categorize our discussion of related work by the different types of DHRs indi-
vidual approaches address. In addition, we discuss approaches which provide users
with assurance that storage providers adhere to DHRs.

Distributing Storage of Data. To enforce storage location requirements, one class of
related work proposes to split data between different storage systems. Wüchner et al.
[WMF13] and CloudFilter [PP12] add proxies between users and storage providers to
transparently distribute data between different cloud storage providers according to
DHRs, while NubiSave [SMS13] enables users to combine resources of different cloud
storage providers to fulfill individual redundancy or security requirements. These
approaches have in common that they can treat individual cloud storage systems
only as black boxes. Consequently, they do not support fine-grained DHRs within
the cloud storage system itself and are limited to a small subset of DHRs.

Sticky Policies. Similar to our idea of specifying DHRs, the concept of sticky policies
[PM11] proposes to attach usage and obligation policies to data when it is outsourced
to third parties. In contrast to our work, sticky policies mainly concern the purpose
of data usage, which is primarily realized using access control. One interesting aspect

132 4. Data Handling Requirements-aware Cloud Infrastructure

of sticky policies is their ability to make them “stick” to the corresponding data using
cryptographic measures which could also be applied to PRADA. In the context of
cloud computing, sticky policies have been proposed to express requirements on the
security and geographical location of cloud storage nodes [PSM09]. However, so far
it has been unclear how this could be realized efficiently in a large and distributed
cloud storage system. With PRADA, we present an approach to achieve this goal.

Policy Enforcement. To enforce privacy policies when accessing data in the cloud,
Betgé-Brezetz et al. [BKDG13] monitor access of virtual machines to shared file
systems and only allow file access if the requesting virtual machine is fully policy
compliant. In contrast, Itani et al. [IKC09] propose to leverage cryptographic copro-
cessors to realize trusted and isolated execution environments and hence enforce the
encryption of data. Espling et al. [ELL+14] aim at allowing cloud service providers
to influence the placement of their virtual machines in the cloud to realize specific
geographical deployments or to provide redundancy by avoiding colocation of critical
components. These approaches are orthogonal to our work, as they primarily focus
on enforcing policies when processing data, while PRADA addresses the challenge
of supporting DHRs when storing data in cloud storage systems.

Location-based Storage. Focusing exclusively on location requirements, Peterson
et al. [PGB11] introduce the concept of data sovereignty with the goal to provide
a guarantee that a provider stores data at claimed physical locations, e.g., based
on measurements of network delay. Similarly, LoSt [WSA+12] enables verification
of storage locations based on a challenge-response protocol. In contrast, PRADA
focuses on the broader challenge of realizing support for arbitrary DHRs.

Controlling Placement of Data. Primarily focusing on distributed hash tables,
SkipNet [HJS+03] enables control over data placement by organizing data mainly
based on string names. Similarly, Zhou et al. [ZGS03] utilize location-based node
identifiers to encode physical topology and hence provide control over data place-
ment at a coarse granularity. In contrast to PRADA, these approaches need to
modify the identifier of data based on the DHRs, i.e., knowledge about the specific
DHRs of data is required to locate it, e.g., when requesting stored data. Targeting
distributed object-based storage systems, CRUSH [WBMM06] relies on hierarchies
and data distribution policies to control placement of data in a storage cluster. These
data distribution policies are bound to a predefined hierarchy and hence cannot of-
fer the same flexibility as PRADA. Similarly, Tenant-Defined Storage [MMV+17]
enables clients to store their data according to DHRs. However and in contrast to
PRADA, all data of one client needs to have the exact same set of DHRs. Finally,
SwiftAnalytics [RZO+17] proposes to control the placement of data to speed up big
data analytics. Here, data can only be put directly on specific nodes without the
abstraction provided by PRADA’s approach of supporting DHRs.

Hippocratic Databases. Hippocratic databases store data together with a purpose
specification [AKSX02], which allows them to enforce the purposeful use of data
using access control and to realize data retention after a certain period. Using
Hippocratic databases, it is furthermore possible to create an auditing framework to
check if a database is complying with its data disclosure policies [ABF+04]. However,
this concept is limited to a single database node and does not support a distributed

4.3. PRADA: Practical Data Compliance for Cloud Storage 133

setting, e.g., as required as a foundation for realizing cloud storage systems, where
storage nodes have different data handling capabilities.

Assurance. To provide assurance that cloud storage providers indeed adhere to
DHRs, de Oliveira et al. [OSGJ13] propose an architecture to automate the moni-
toring of compliance to DHRs when transferring data within the cloud. Bacon et al.
[BEP+14] and Pasquier et al. [PSBE16] show that this can also be achieved using the
concept of information flow control. Similarly, Massonet et al. [MNP+11] propose
a monitoring and audit logging architecture in which infrastructure provider and
service provider collaborate to ensure compliance with data location requirements.
These approaches are orthogonal to our approach and could be used to verify that
providers of cloud storage systems operate PRADA in an honest way.

Our discussion of related work shows that support for arbitrary DHRs in cloud stor-
age systems is an open challenge. Related work either focuses on respecting DHRs
during the processing of data in the cloud, develops specifically tailored solutions
for supporting some carefully selected DHRs while storing data (often with respect
to storage location), or treats the cloud infrastructure as a black box and hence
aims at realizing some DHRs on a coarse granularity from the client side. To over-
come these shortcomings of related work, we present the design of PRADA in the
following. PRADA empowers users to request compliance with a comprehensive set
of fine-grained DHRs when storing their data in cloud storage systems and enables
the providers of these systems to efficiently and effectively realize compliance with
user-dictated DHRs in a distributed storage cluster.

4.3.2 Supporting Data Handling Requirements

In this section, we describe the design of PRADA, our approach to support data
handling requirements (DHRs) in key-value based cloud storage systems that meets
the goals we derived in Section 4.3.1.3. The problem that has prevented support
for DHRs so far stems from the common pattern used to address data in key-value
based cloud storage systems: Data is addressed, and hence also partitioned (i.e.,
distributed to the cloud nodes in the cluster), using a designated key (i.e., a unique
identifier for a piece of data which does not take into account DHRs). Yet, the
responsible node (according to the key) for storing a piece of data often cannot fulfill
the client’s DHRs, e.g., because it is located in the “wrong” physical or jurisdictional
location. Thus, the challenge faced by our work is how to realize compliance with
DHRs and still allow for key-based data access in a distributed cloud storage system.

4.3.2.1 System Overview

To tackle this challenge, our core idea underlying PRADA is to add an indirection
layer on top of a cloud storage system. We illustrate how we integrate this layer into
existing cloud storage systems in Figure 4.17. The general idea of this indirection
layer is to store a data item at a different node, called target node, whenever the
responsible node cannot comply with the stated DHRs. To still enable the lookup

134 4. Data Handling Requirements-aware Cloud Infrastructure

Figure 4.17 PRADA adds an indirection layer to support DHRs. The capability store records
which nodes supports which DHRs, the relay store contains references to indirected data, and
the target store saves indirected data.

of this data item (e.g., when a user wants to access her stored data), the responsible
node stores a reference to the target node for this data item. As shown in Figure
4.17, we introduce three new storage components, i.e., (i) capability store, (ii) relay
store, and (iii) target store to realize PRADA, as described in the following.

Capability Store: The global capability store is used to look up nodes that can
comply with a specific DHR, similar to the concept of node capabilities for CPPL
(cf. Section 4.2.2). In the context of this work, we consider all DHRs that describe
properties of a storage node and range from rather simplistic properties such as
storage location to more advanced capabilities such as the support for deleting data
at a specified point in time using our formalized notion of DHRs (cf. Section 4.3.1.2).
Notably, we focus on providing the possibility to account for such DHRs in our work.
Hence, the concrete realization (e.g., the actual deletion of data) has to be realized
by the provider of the cloud storage system in a second step and is considered
out of scope for PRADA. To speed up lookups in the capability store, each cloud
node keeps a local copy of the capability information. Depending on the underlying
cloud storage system, the distribution of this information can either be realized
by pre-configuring the capability store for all nodes in the cloud storage cluster or
by utilizing mechanisms of the cloud storage system itself for creating a globally
replicated view of the capabilities of the storage nodes.

Relay Store: Each cloud node operates a local relay store containing references
to data this node is responsible for (based on the data’s key) but stored at other
nodes. More precisely, the relay store contains references to data the node itself is
responsible for but cannot comply with the DHRs posed during insertion. For each
data item, the relay store contains the key of the data, a reference to the target node
at which the data is actually stored, and a copy of the DHRs.

Target Store: Each node stores data that has been redirected to it in a target store.
The target store operates exactly as a traditional data store but enables a node to
distinguish data that falls under DHRs from data that does not.

Relying on an indirection layer comes at the cost of increasing the time required for
communication within the storage cluster and thus likely increasing query comple-
tion times. However, alternatives to adding an indirection layer are likely not viable
for scalable key-value based cloud storage systems: Although it is possible to encode
very short DHRs in the key used for data access [HGKW13], this requires knowledge

4.3. PRADA: Practical Data Compliance for Cloud Storage 135

Figure 4.18 When creating data, the coordinator derives nodes that comply with the DHRs
from the capability store. It then forwards the data to the target node and stores a reference
to the data at the responsible node.

about DHRs of a data item to compute the key for accessing it and disturbs load
balancing. Alternatively, replication of all relay information on all nodes of a cluster
allows nodes to derive relay information locally. This, however, severely impacts the
scalability of the cloud storage system and reduces the total storage amount to the
limited storage space of single nodes.

Integrating PRADA into a cloud storage system requires us to adapt storage opera-
tions (e.g., creating and updating data) and to reconsider replication, load balancing,
and failure recovery strategies in the presence of DHRs. In the following, we describe
how we address these tasks.

4.3.2.2 Cloud Storage Operations

The most important modifications and considerations of PRADA involve the create,
read, update, and delete (CRUD) operations of cloud storage systems. In the follow-
ing, we describe how we integrate PRADA into the CRUD operations of our cloud
storage model (as introduced in Section 4.3.1.1). To this end, we assume that queries
to the storage systems are processed on behalf of the user by one of the cloud nodes
in the cluster, which is the prevalent deployment model for cloud storage [LM10].
We refer to the cloud node that processes a query as the query’s coordinator in the
following. Each node of the cluster can act as coordinator for a query and a client
application, e.g., a cloud service, will typically select one randomly. To ease presen-
tation, we postpone the discussion of the impact of different replication factors and
load balancing decisions to Section 4.3.2.3 and Section 4.3.2.4, respectively.

Creating Data. The coordinator for a query first checks whether a create request is
accompanied by DHRs. If no DHRs are specified, the coordinator uses the standard
method of the cloud storage system to create data such that the performance of
native create requests is not impaired. For all data with DHRs, a create request
proceeds in three steps as illustrated in Figure 4.18.

In Step 1, the coordinator derives the set of eligible nodes from the received DHRs,
relying on the capability store (as introduced in Section 4.3.2.1) to identify nodes
that fulfill all requested DHRs. As introduced in our design of CPPL as a privacy
policy language in the context of cloud computing, users can combine different types
of DHRs, e.g., location and support for deletion (cf. Section 4.2.2). Cloud nodes are

136 4. Data Handling Requirements-aware Cloud Infrastructure

Figure 4.19 When reading data, the coordinator contacts the responsible node to fetch the
data. As the data was created with DHRs, the responsible node forwards the query to the
target, which directly sends the response to the coordinator.

eligible to store a piece of data if they support at least one of the specified properties
for each requested type (e.g., one out of multiple permissible locations). When the
coordinator derived the set of nodes in the storage cluster that can comply with all
requirements specified by the user, it has to pick the target node that should store
the data out of this set of eligible nodes. For this selection, it is important to choose
the target such that the overall storage load in the cluster remains balanced (we
defer a detailed discussion of this issue to Section 4.3.2.4).

In Step 2, the coordinator forwards the data to the target node, which stores the
data in its target store.

Finally, in Step 3, the coordinator instructs the responsible node to store a reference
to the actual storage location of the data to enable locating data upon subsequent
read, update, and delete requests. The coordinator acknowledges the successful
insertion to the client application after all three steps have been completed success-
fully. To speed up create operations, the second and third step—although logically
separated—are performed in parallel. We defer a discussion on the recovery from
failures during the creation of data to Section 4.3.2.5.

Reading Data. Processing read requests in PRADA is again performed in three
steps as illustrated in Figure 4.19. In Step 1, the coordinator for the read query uses
the key supplied in the request to initiate a standard read query at the responsible
node for this key. If the responsible node does not store the data itself, it checks
its local relay store for a reference to the target node for this data. Should it hold
such a reference, the responsible node forwards the read request to the target node
that is listed in the relay store in Step 2. To allow the target node to directly
send the response back to the coordinator for this request, the forwarded request
includes information on how to reach the coordinator node. In Step 3, the target
node looks up the requested data in its local target store and directly returns the
query result to the coordinator node for this query. Upon receiving the result from
the target node, the coordinator processes the result in the same way as any other
query result. If the responsible node stores the requested data locally (because it was
stored without DHRs or the responsible node can comply with the stated DHRs), it
directly answers the request using the default method of the cloud storage system.
In contrast, if the responsible node neither stores the data directly nor a reference
to it in the relay store, PRADA will correctly report that no data was found using
the standard mechanism of the cloud storage system.

4.3. PRADA: Practical Data Compliance for Cloud Storage 137

Updating Data. An update request for already stored data involves the (potentially
partial) update of stored data as well as the possible update of associated DHRs.
In the scope of PRADA, we assume that DHRs supplied with the update request
supersede DHRs supplied with the initial create request and any potentially earlier
updates. Other semantics for handling DHRs supplied with the update request,
e.g., combining old and new DHRs, can be realized by slightly adapting the update
procedure of PRADA. We process update requests the same way as create requests
(as it is often done in cloud storage systems). Whenever an update request results
in the necessity to change the target node of already stored data (due to changes in
attached DHRs), the responsible node has to update its relay store. Furthermore,
the update request needs to be applied to the stored data (currently located at the
old target node). To this end, the responsible node instructs the old target node to
move the data to the new target node. Upon reception of the data, the new target
node applies the update to the data, locally stores the result, and acknowledges the
successful update to the coordinator and the responsible node. The responsible node
then updates its relay information. As updates for data without DHRs are directly
sent from the coordinator to the responsible node, we do not impair the performance
of native requests compared to an unmodified cloud storage system.

Deleting Data. In PRADA, delete requests are processed analogously to read re-
quests. To this end, the coordinator sends the delete request to the responsible node
for the key that should be deleted. If the responsible node itself stores the data, it
deletes the data right away as in an unmodified cloud storage system. In contrast, if
it only stores a reference to the data, it deletes the reference in its local relay store
and forwards the delete request to the target node. The target node then deletes the
stored data and informs the coordinator of the delete request about the successful
termination of the query. We defer a discussion of recovering from failures during
this process to Section 4.3.2.5.

4.3.2.3 Replication

Cloud storage systems employ replication of data to realize high availability and
data durability [LM10]: Instead of storing a data item only on one cloud node, it
is stored on r nodes (typically, with a replication factor 2 ≤ r ≤ 3). In key-value
based storage systems, the r nodes are chosen based on the key that identifies the
data (cf. Section 4.3.2.1). When accounting for compliance with DHRs specified by
users, we cannot use the same replication strategy as the nodes selected by the key
generally do not support the stated DHRs. In the following, we thus detail how
PRADA instead realizes replication.

Creating Data. Instead of selecting only one target node, the coordinator of the
create query selects r target nodes out of the set of eligible nodes. The coordinator
then sends the data to all r target nodes. Furthermore, the coordinator sends the
list of all r target nodes to the r responsible nodes according to the unmodified
replication strategy of the underlying cloud storage system. Consequently, each of
the r responsible nodes knows about all r target nodes and hence can populate its
relay store accordingly.

138 4. Data Handling Requirements-aware Cloud Infrastructure

Reading Data. To process a read request, the coordinator of a query forwards the
read request to all responsible nodes. Each responsible node that receives a read
request for data it does not store locally looks up the target nodes for this data in
its local relay store and forwards the read request to all r target nodes. Likewise,
each target node that receives a read request sends the requested data back to
the coordinator for this request. However, in contrast to the standard behavior, a
target node may receive multiple forwarded read requests (from different responsible
nodes). In this case, the target node processes only the first request and ignores any
subsequent duplicate requests. To enable target nodes to detect duplicate requests,
each request contains a unique identifier.

Impact on Reliability. To successfully process a query in PRADA, it suffices if one
responsible node and one target node for the requested data are reachable. Thus,
PRADA can tolerate the failure of up to r − 1 responsible nodes and up to r − 1
target nodes for each piece of data. We further discuss the impact of node failures
in Section 4.3.2.5.

4.3.2.4 Load Balancing

In cloud storage systems, load balancing aims to minimize (long-term) load dis-
parities in the storage cluster by distributing stored data and read requests equally
among the cloud nodes. Since PRADA changes how data is assigned to and retrieved
from nodes, existing load balancing schemes must be rethought. In the following, we
first describe a formal metric to measure load balance and then explain how PRADA
ensures a load-balanced cloud storage system.

Load Balance Metric. Intuitively, a good load balancing aims at all nodes in a
cloud storage system being (nearly) equally loaded, i.e., the imbalance between the
load of nodes should be minimized. This is important, since underloaded nodes con-
stitute a waste of resources, while overloaded nodes drastically decrease the overall
performance of the cloud storage system. We measure the load balance of a cloud
storage system by normalizing the global standard deviation of the load of individual
nodes with the mean load μ of all nodes [CLZ99]:

L := 1
μ

√√√√∑|N |
i=1(Li − μ)2

|N |
with Li being the load of node i ∈ N . To achieve a reasonably balanced load
across the cloud storage system, we strive to minimize L. By employing this metric,
we especially penalize outliers, i.e., nodes with extremely low or high loads, which
follows our intuition of a good load balance.

Load Balancing in PRADA. Traditional key-value based cloud storage systems
achieve a reasonably balanced load across the different nodes in the cluster in two
steps: (i) Equal distribution of data at insertion time, e.g., by applying a hash
function to identifier keys, and (ii) re-balancing the cluster if absolutely necessary,
e.g., if huge load imbalances are detected, by moving data between nodes. More
advanced cloud storage systems support additional mechanisms, e.g., load balancing

4.3. PRADA: Practical Data Compliance for Cloud Storage 139

over geographical regions [CDE+13]. Since our focus lies on proving the general
feasibility of supporting compliance with DHRs in cloud storage systems, we focus
on the properties of key-value based storage for our discussion of load balancing
strategies in the scope of this work.

Re-balancing a cluster by moving data between nodes can be handled by PRADA
similarly to moving data in case of node failures as we discuss in Section 4.3.2.5.
In the following, we thus focus on the challenge of load balancing in PRADA at
insertion time, i.e., equally distributing data with DHRs across target nodes. Load
balancing of indirection information and data without DHRs is already achieved by
the standard mechanisms of key-value based cloud storage systems, e.g., by hashing
identifier keys.

In contrast to key-value based cloud storage systems, load balancing for data with
DHRs in PRADA is more challenging: When processing a create request, the eligible
target nodes are not necessarily equal as they might be able to comply with different
DHRs. For example, some eligible target nodes might offer rarely supported but
often requested requirements. However, foreseeing future demands is notoriously
difficult [RA14]. Thus, we suggest to make the load balancing decision based on
the past demand as reflected by the current load of cloud nodes. To this end, the
coordinator of a query (which selects the target nodes when processing a create
request) needs to be aware of the current load of all other nodes in the cloud cluster.
Cloud storage systems typically already exchange this information or can easily be
extended to do so, e.g., using efficient gossiping protocols [RDGT08]. We hence
utilize this load information in PRADA as follows. To select the target nodes from
the set of eligible nodes, the coordinator first checks if any of the responsible nodes
are also eligible to become a target node and selects those as target nodes first.
This allows us to increase the performance of CRUD requests as we can avoid the
indirection layer in this case. For the remaining target nodes, the coordinator selects
those with the lowest current storage load.

However, the load information provided by the underlying cloud storage system
typically has a certain delay, resulting, e.g., from the employed gossiping scheme
[RDGT08]. To cope with this issue and thus have access to more timely load infor-
mation, each node in PRADA locally keeps track of all create, update, and delete
requests it is involved with. Whenever a node itself stores new data or sends data for
storage to other nodes, it increments temporary load information for the respective
node. Similarly, the node decrements temporary load information when handling
delete requests. This temporary and partial load information is used to bridge the
time between two updates of the load information, e.g., by the underlying gossiping
protocol. As we see in Section 4.3.3.3, this approach enables PRADA to adapt to
different usage and load scenarios to quickly achieve a (nearly) optimally (under the
constraints posed by users’ DHRs) balanced cloud storage cluster.

4.3.2.5 Failure Recovery

When introducing support for DHRs to cloud storage systems, we must ensure not
to break the underlying failure recovery mechanisms that, e.g., allow cloud storage

140 4. Data Handling Requirements-aware Cloud Infrastructure

systems to cope with failures of individual cloud nodes resulting from issues such
as hardware, software, and network defects. With PRADA, we specifically need to
take care of dangling references, i.e., a reference pointing to a target node that does
not store the corresponding data (anymore), and unreferenced data, i.e., data stored
on a target node without a functioning reference at the corresponding responsible
node. These inconsistencies could stem from failures during the (modified) CRUD
operations as well as from actions explicitly triggered by DHRs. For example, dele-
tions requested by DHRs require the subsequent deletion of indirection information
at the corresponding responsible nodes. In the following, we discuss how PRADA
handles failures during these operations in more detail.

Creating Data. For create requests, the coordinator has to transmit data to the
target node and inform the responsible node to store the reference. The coordinator
can detect errors that occur during these operations by missing acknowledgments.
Resolving these errors requires the coordinator to perform a rollback and/or reissue
actions, e.g., selecting a new target node and updating the reference at the responsi-
ble node. Still, also the coordinator itself can fail during the process of creating data,
which potentially can lead to unreachable data. As such failures happen compara-
bly rarely, we suggest refraining from including corresponding consistency checks
directly into the processing of create operations [NG15]. Instead, we detect failures
of the coordinator directly at the client application, e.g., a cloud service, through
missing acknowledgments. In this case, the client application informs all potential
target nodes to remove the potentially unreferenced data and subsequently reissues
the create operation at another coordinator.

Reading Data. In contrast to all other operations, read requests do not change
any state in the cloud storage system. Hence, in case of detected failures during
read requests (identified by missing acknowledgments), these requests can simply be
reissued and no further error handling is required.

Updating Data. Although update operations are slightly more complex than cre-
ate operations (cf. Section 4.3.2.2), we can perform failure handling and recovery
analogously. As the responsible node updates its reference only upon reception of
the acknowledgment from the new target node, the storage state is guaranteed to
remain consistent. Hence, the coordinator can simply reissue the update request
using the same or a new target node and perform corresponding cleanups if errors
occur. Contrary, if the coordinator fails, information on the potentially new target
node is lost. Similar to create operations, the client application can resolve this
situation by informing all potential target nodes about the failure. Subsequently,
the responsible nodes trigger a cleanup to ensure a consistent storage state.

Deleting Data. When deleting data, a responsible node may have already deleted
a reference when the communication with the target node to delete the actual data
fails. Both coordinator and client application can easily detect this error through
the absence of the corresponding acknowledgment. Again, either coordinator or
client application can then issue a message to all potential target nodes to delete the
corresponding piece of data. We consider this approach to be more reasonable than
directly incorporating consistency checks for all delete operations as such failures
typically occur only rarely [NG15].

4.3. PRADA: Practical Data Compliance for Cloud Storage 141

Propagating Target Node Actions. The above CRUD operations are triggered
by users or client applications, e.g., cloud services. However, deletion or relocation
of data, which may result in dangling references or unreferenced data, can also
be triggered by the cloud storage systems itself or by DHRs that, e.g., specify a
maximum lifetime for data. To keep the state of the cloud storage system consistent,
target nodes perform data deletion and relocation through a coordinator as well, i.e.,
they randomly select one of the other nodes in the cloud storage system to perform
the update and delete operations on their behalf. Thus, the correct execution of
deletion and relocation requests can be monitored and potential failures addressed
using the above mechanisms for CRUD operations.

4.3.3 Evaluation

For the practical evaluation of our approach, we fully implemented PRADA on top
of the widely-deployed distributed database Cassandra [LM10]. Based on our imple-
mentation of PRADA, we perform benchmarks to quantify query completion times,
storage overhead, and traffic consumption as well as show PRADA’s applicability
in two real-world use cases. Furthermore, we study PRADA’s load behavior based
on simulation. Our evaluation shows that PRADA meets our set goals of minimal
performance impact, cluster balance, and coexistence (cf. Section 4.3.1.3).

4.3.3.1 Implementation

Our implementation of PRADA is based on Cassandra 2.0.5, but conceptually also
works with newer versions. Cassandra is a distributed database that is actively
used as a key-value based cloud storage system by more than 1500 companies with
deployments of up to 75 000 nodes [Apa18a] and offers high scalability even over
multiple data centers [RGS+12], which makes it especially suitable for our scenario.

Cassandra also implements advanced features that go beyond simple key-value stor-
age such as column-orientation and queries over ranges of keys, which allows us to
showcase the flexibility and adaptability of our design.

Background on Cassandra

Cassandra realizes a combination of a structured key-value store and the column-
oriented paradigm [Cat11]. To this end, data in Cassandra is divided into multiple
logically separated databases, called keyspaces. A keyspace consists of tables which
are called column families and contain rows and columns. Each row has a unique
key and consists of several columns. Notably, and in contrast to traditional column-
oriented databases, rows of the same table do not need to have the same set of
columns and columns can be added to one or more rows anytime [Dat17b]. To
partition rows based on their key, Cassandra uses a distributed hash table with
murmur3 as the hash function. In contrast to distributed hash tables in peer-to-
peer systems [WGR05], each node in the cluster knows about all other nodes and

142 4. Data Handling Requirements-aware Cloud Infrastructure

the ranges of the hash table they are responsible for. Cassandra uses the gossiping
protocol Scuttlebutt [RDGT08] to efficiently distribute this knowledge as well as to
detect node failures and exchange node state, e.g., the load of individual nodes.

Information Stores

Our design of PRADA relies on three information stores: the global capability store
as well as relay and target stores (cf. Section 4.3.2.1). We implement these as
individual keyspaces in Cassandra as detailed in the following. First, we realize the
global capability store as a globally replicated key space initialized at the same time
as the cluster. Within this key space, we create a column family for each DHR
type (as introduced in Section 4.3.1.2). When a node joins the cluster, it inserts
those DHR properties it supports for each DHR type into the corresponding column
family. This information is then automatically replicated to all other nodes in the
cluster using Cassandra’s default mechanism for replicating data within the cluster.

For each regular key space of the database, we additionally create a corresponding
relay store and target store as key spaces. Here, the relay store inherits the replica-
tion factor and replication strategy from the regular key space to achieve replication
for PRADA (cf. Section 4.3.2.3), i.e., the relay store will be replicated in exactly the
same way as the regular key store. Hence, for each column family in the correspond-
ing keyspace, we create a column family in the relay keyspace that acts as the relay
store. We follow a similar approach for realizing the target store, i.e., for each key
space we create a corresponding key space to store actual data. However, to ensure
that DHRs are adhered to, we implement a DHR-aware replication mechanism to
ensure adherence to DHRs. For each column family in the corresponding keyspace,
we create an exact copy in the target keyspace to act as the target store.

While the global capability store is created when the cluster is initiated, relay and
target stores have to be created whenever a new keyspace or column family is created,
respectively. To this end, we hook into Cassandra’s CreateKeyspaceStatement class
for detecting requests for creating keyspaces and column families and subsequently
initialize the corresponding relay and target stores.

Creating Data and Load Balancing

To allow clients to specify their DHRs when inserting or updating data, we sup-
port the specification of arbitrary DHRs in textual form for INSERT requests. To
this end, we add an optional postfix WITH REQUIREMENTS to INSERT statements by
extending the grammar from which parser and lexer for CQL3 [Apa18c], the SQL-
like query language of Cassandra, are generated using ANTLR [PQ95]. Using the
WITH REQUIREMENTS statement, arbitrary DHRs can be specified separated by the
keyword AND, e.g., INSERT ... WITH REQUIREMENTS location = { ’DE’, ’FR’,
’UK’ } AND encryption = { ’AES-256’ }. In this example, any node located in
Germany, France, or the United Kingdom that supports AES-256 encryption is el-
igible to store the inserted data. This approach enables users to specify any DHRs
covered by our formalized model of DHRs (cf. Section 4.3.1.2).

4.3. PRADA: Practical Data Compliance for Cloud Storage 143

To detect and process DHRs in create requests (cf. Section 4.3.2.2), we extend Cas-
sandra’s QueryProcessor class, specifically its getStatement method for processing
INSERT requests. When processing requests with DHRs (specified using the WITH
REQUIREMENTS statement), we base our selection of eligible nodes on the global capa-
bility store. Nodes are eligible to store data with a given set of DHRs if they provide
at least one of the specified properties for each requested type (e.g., one out of mul-
tiple permitted locations). We prioritize nodes that Cassandra would pick without
DHRs, as this speeds up reads for the corresponding key later on, and otherwise
choose nodes according to our load balancing strategy (cf. Section 4.3.2.4).

The implementation of our load balancing strategy relies on Cassandra’s gossiping
mechanism [LM10], which maintains a map of all nodes of a cluster and their loads.
We access this information using Cassandra’s getLoadInfo method and extend the
load information with local estimators for load changes. Whenever a node stores
data or sends a create request, we update the local estimator with the data size. To
this end, we hook into the methods that are called when data is modified locally or
forwarded to other nodes, i.e., the corresponding methods in Cassandra’s Modifi-
cationStatement, RowMutationVerbHandler, and StorageProxy classes as well as
our methods for processing requests with DHRs.

Reading Data

To allow reading redirected data as described in Section 4.3.2.2, we modify Cassan-
dra’s ReadVerbHandler class for processing read requests at the responsible node.
This handler is called whenever a node receives a read request from the coordinator
and hence enables us to check whether the current node holds a reference to another
node for the requested key by locally checking the corresponding column family of
the relay store. If no reference exists, the node continues with a standard read oper-
ation for local data. Otherwise, the node forwards a modified read request to each
target node using Cassandra’s sendOneWay method, in which it directly requests the
data from the respective target stores on behalf of the coordinator. Subsequently,
the target nodes send the data directly to the coordinator node (as identified in
the request). To correctly resolve references to data for which the coordinator of a
query is also the responsible node, we additionally add corresponding checks to the
LocalReadRunnable subclass of the StorageProxy class.

4.3.3.2 Benchmarks

We first benchmark PRADA’s query completion time, consumed storage space, and
bandwidth consumption. In all settings, we compare the performance of PRADA
with the performance of an unmodified Cassandra installation as well as a sys-
tem running PRADA but receiving only data without attached DHRs, denoted by
PRADA*. This approach enables us to evaluate whether data without attached
DHRs is impaired by PRADA or not.

We set up a cluster of 10 identical nodes (Intel Core 2 Q9400, 4 GB RAM, 160 GB
HDD, Ubuntu 14.04) interconnected via a gigabit Ethernet switch. Additionally, we

144 4. Data Handling Requirements-aware Cloud Infrastructure

Figure 4.20 When studying query completion times for different RTTs, we observe that
PRADA introduces limited overhead for operations on data with DHRs, while data without
DHRs is not impacted by PRADA at all.

use one node with the same configuration to interface with the cloud storage system
to perform CRUD operations. We assign each node a distinct DHR property. When
inserting or updating data, clients request a set of exactly three of the available
properties uniformly at random. Each row of data consists of 200 byte (+ 20 byte
for the key), spread over 10 columns. These are rather conservative numbers as
the relative overhead of PRADA decreases with increasing storage size. For each
result, we performed 5 runs with 1000 operations each and depict the mean value
for performing one operation with 99 % confidence intervals.

Query Completion Time

The query completion time (QCT) denotes the time the coordinator takes for pro-
cessing a query, i.e., from receiving it until sending the result back to the client. It
is influenced by the round-trip time (RTT) between nodes in the cluster and the
replication factor applied to data.

We first study the influence of different RTTs on the QCT for a replication factor
r = 1. To this end, we artificially add latency to outgoing packets for inter-cluster
communication using netem [Hem05] to emulate RTTs ranging from 100 to 250 ms
in steps of 50 ms. Our choice covers RTTs actually observed in communication be-
tween cloud data centers around the world [SMS11] which we independently verified
through measurements in the Microsoft Azure cloud. In Figure 4.20, we depict the
resulting QCTs for the different CRUD operations and increasing RTTs.

We make two observations: First, QCTs of PRADA* are identical to those of the
unmodified Cassandra. Hence, data without DHRs is not impaired by PRADA.
Second, the additional overhead of PRADA lies between 15.4 to 16.2 % for create,
40.5 to 42.1 % for read, 48.9 to 50.5 % for update, and 44.3 to 44.8 % for delete.
The overheads for read, update, and delete correspond to the additional 0.5 RTT of
the indirection layer and is slightly worse for updates as data stored at potentially
old target nodes additionally needs to be deleted. This increase in QCTs constitute
the costs users have to accept in turn for having support for DHRs in cloud storage

4.3. PRADA: Practical Data Compliance for Cloud Storage 145

Figure 4.21 When studying the impact of an increasing replication factor on QCTs, create
and update in PRADA show modest overhead for increasing replicas due to larger messages.

Figure 4.22 PRADA introduces only constant storage overhead per DHR affected replica,
while not affecting data without DHRs.

systems. QCTs below the RTT result from corner cases where the coordinator is
also responsible for storing data.

We now fix RTTs to 100 ms and study the impact of replication factors r = 1, 2, and
3 on QCTs as shown in Figure 4.21. Again, we observe that the QCTs of PRADA*
and Cassandra are identical. Consequently, we conclude that data without DHRs is
not impacted by PRADA. For increasing replication factors, the QCTs for PRADA*
and Cassandra reduce as it becomes more likely that the coordinator also stores the
data. In this case, Cassandra optimizes queries.

When considering the overhead of PRADA, we witness that the QCTs for creates
(overhead increasing from 14 to 46 ms) and updates (overhead increasing from 46 to
80 ms) cannot benefit from these optimizations, as this would require the coordinator
to be responsible and target node at the same time, which happens only rarely.
Furthermore, the increase in QCTs for creates and updates results from the overhead
of handling r references at r nodes. For reads, PRADA shows an average overhead
of 37 to 43 ms due to the additional 0.5 RTT for the indirection layer. For deletes,
the overhead decreases from 41 to 12 ms for an increasing replication factor, which
results from an increased likelihood that the coordinator node is at least either
responsible or target node, which avoids the need for additional communication.

146 4. Data Handling Requirements-aware Cloud Infrastructure

Figure 4.23 When considering the resulting network traffic, we observe that data without
DHRs is not affected by PRADA. Furthermore, replicas linearly increase the traffic overhead
introduced by DHRs.

Consumed Storage Space

To quantify the additional storage space introduced by PRADA, we measure the
consumed storage space after data has been inserted, using the cfstats option
of Cassandra’s nodetool utility. To this end, we conduct insertions for payload
sizes of 200 and 400 byte (plus 20 byte for the key), i.e., we fill 10 columns with 20
respectively 40 byte payload in each query, with replication factors of r = 1, 2, and
3. We divide the total consumed storage space per run by the number of insertions
and show the mean consumed storage space per inserted row over all runs in Figure
4.22. Each additional replica increases the required storage space by roughly 90 % for
Cassandra. PRADA adds an additional constant overhead of roughly 115 byte per
replica. While the precise overhead of PRADA depends on the encoding of DHRs
and relay information, the important observation here is that it does not depend on
the size of the stored data.

If deemed necessary, the required storage space can be further reduced, e.g., by inte-
grating PRADA with CPPL, our storage space-efficient privacy policy language (cf.
Section 4.2). As we show in our evaluation of CPPL’s performance (cf. Section 4.2.3),
the processing overhead for employing policy compression with CPPL lies well below
1 ms, hence leading only to a marginal impact on the QCTs of PRADA.

Bandwidth Consumption

Furthermore, we measure the network traffic that results from the individual CRUD
operations for Cassandra, PRADA*, and PRADA. Figure 4.23 depicts the mean
total generated network traffic per individual operation. Our results show that
using PRADA comes at the cost of an overhead that scales linearly in the replication
factor. When considering Cassandra and PRADA*, we observe that the consumed
traffic for read operations does not increase when raising the replication factor from
2 to 3. This results from an optimization in Cassandra that requests the data only
from one replica and probabilistically compares only digests of the data held by the
other replicas to perform post-request consistency checks. We did not include this
optimization in PRADA and hence it is possible to further reduce the bandwidth

4.3. PRADA: Practical Data Compliance for Cloud Storage 147

Figure 4.24 Load balance in PRADA depends on the throughput of insert operations. Even
for high throughputs, the deviation from an evenly balanced load stays below 0.5 %.

consumed by PRADA by applying the same optimization. For the other operations,
the overhead introduced by our indirection layer ranges from 2.4 to 3.3 KB for a
replication factor of 3. For a replication factor of 1, the highest overhead introduced
by PRADA peaks at 1.1 KB. Thus, we conclude that the traffic overhead of PRADA
is manageable for practical operation in cloud storage systems.

4.3.3.3 Load Distribution

To quantify the impact of PRADA on the load distribution of the overall cloud
storage system, we rely on simulation as this enables us to perform a large-scale
analysis of the load distribution by considering a wide range of scenarios.

Simulation Setup

As we are solely interested in the load behavior, we implemented a custom simulator
in Python, which models the characteristics of Cassandra with respect to network
topology, data placement, and gossip behavior based on the concept of discrete-
event simulation [WGG10]. Using this simulator, we realize a cluster of n nodes,
which are equally distributed among the keyspace [Dat17b] and use this cluster to
insert m data items with random keys. For reasons of simplicity, we assume that
all data items are of the same size. The nodes operate Cassandra’s gossip protocol
[RDGT08], i.e., synchronize with one random node every second and update their
own load information every 60 s. We randomize the initial offset before the first
gossip message for each node individually, as, in reality, not all nodes perform the
gossip at the same point in time. We repeat each measurement 10 times with
different real random seeds [Wal96] and show the mean of the load balance metric L
(cf. Section 4.3.2.4) over these measurements with 99 % confidence intervals.

Influence of Throughput

We expect the load distribution to be influenced by the freshness of the load infor-
mation as gossiped by other nodes, which strongly correlates with the throughput of

148 4. Data Handling Requirements-aware Cloud Infrastructure

Figure 4.25 When studying the influence of the conformance of DHRs with node properties,
we observe that PRADA’s load balance shows close to optimal behavior. However, heavy
deviation of DHRs from nodes’ properties leads to non-even load.

create requests. A lower throughput results in less data being inserted between two
load information updates and hence the load information remains relatively fresher
compared to a scenario with a higher throughput of create operations. To study this
effect, we perform an experiment where we simulate different insertion throughputs
and hence vary the gossiping delay. We simulate a cluster with 10 nodes and 107

create requests, each accompanied by DHRs. Even for high throughputs, this pro-
duces enough data to guarantee at least one gossip round during each simulation
run. To challenge the load balancer, we synthetically create two types of DHRs
with two properties, each supported by half of the nodes such that each combina-
tion of the properties of the two types of DHRs is supported by two or three nodes.
For each create request we randomly select one of the resulting possible DHRs, i.e.,
demanding one of the properties for one or two of the DHRs types.

Figure 4.24 shows the deviation from an even load for increasing throughput com-
pared to the load distribution of a traditional Cassandra cluster. Additionally, we
calculated the optimal solution under a posteriori knowledge by formulating the
corresponding quadratic program for minimizing the load balance L and solving it
using CPLEX [IBM17]. In all cases we observe that the resulting optimum leads to
a load balance of 0, i.e., all nodes are equally loaded, and hence omit these results
in the plot. Seemingly large confidence intervals result from the high resolution of
our plot (in all scenarios, PRADA deviates less than 0.5 % from even load). Our
results show that PRADA surprisingly even outperforms Cassandra for very small
throughputs (the load imbalance of Cassandra results from the randomness of the
hash function) and the introduced load imbalance for the other scenarios stays be-
low 0.5 %, even for a high throughput of 100 000 insertions/s. To put these numbers
into perspective, Dropbox processed less than 20 000 insertions/s on average in June
2015 [Dro15]. In summary, our results indicate that frequent updates of node state
result in a better load balance for PRADA. Still, even for less frequent updates,
PRADA still achieves a load balance that is extremely close to the standard load
balance realized by an unmodified Cassandra cluster.

4.3. PRADA: Practical Data Compliance for Cloud Storage 149

Influence of DHR Fit

In PRADA, one of the core influence factors on the load distribution is the ac-
cordance of users’ DHRs with the properties provided by cloud storage nodes. If
the distribution of DHRs in create requests heavily deviates from the distribution
of DHRs supported by the storage nodes, it is impossible to achieve an even load
distribution. To study this aspect, we consider a scenario where each node has a
storage location and users request exactly one of the available storage locations as
their DHR. We simulate a cluster of 100 nodes that are geographically distributed
according to the IP address ranges of Amazon Web Services [AWS17] (North Amer-
ica: 64 %, Europe: 17 %, Asia-Pacific: 16 %, South America: 2 %, China: 1 %). First,
we insert data with DHRs such that the distribution of requested storage locations
exactly matches the distribution of nodes. Subsequently, we worsen the accuracy of
fit by subtracting 10 % to 100 % from the location with the most nodes (i.e., North
America) and proportionally distribute this demand to the other locations (in the
extreme setting, North America: 0 %, Europe: 47.61 %, Asia-Pacific: 44.73 %, South
America: 5.74 %, and China: 1.91 %). For each of the resulting scenarios, we simu-
late 107 insertions at a throughput of 20 000 insertions/s.

To put our results into perspective, we calculate the optimal load using a posteriori
knowledge by equally distributing the data on the nodes of each location. Our results
are depicted in Figure 4.25. We derive two insights from this experiment: (i) the
deviation from an even cluster load scales linearly with decreasing accordance of
users’ DHRs with the capabilities of cloud nodes in the storage cluster and (ii) in
all considered settings, PRADA manages to achieve a cluster load that is extremely
close to the theoretical optimum (increase < 0.03 % in all settings). Hence, we
can conclude that PRADA’s approach of load balancing perfectly adapts to the
challenges imposed by complying with DHRs in cloud storage systems.

4.3.3.4 Applicability

We show the applicability of PRADA by using it to realize two real-world use cases:
a microblogging system and a distributed email management system. To this end,
we emulate a globally distributed cloud storage using our cluster of 10 nodes (cf.
Section 4.3.3.2) by modeling a worldwide distribution of nodes based on measure-
ments we performed in Microsoft’s Azure Cloud. We emulate one node in each
of the following regions provided by Microsoft Azure [Mic16b]: asia-east, asia-
southeast, canada-east, eu-north, eu-west, japan-east, us-central, us-east,
us-southcentral, and us-west. To this end, we use netem to add delay between the
cluster nodes according to measurements of this topology we performed using hping3
[San06] in Microsoft’s Azure Cloud. The resulting RTTs between the nodes of our
cluster range from 24.3 ms (eu-north → eu-west) to 286.2 ms (asia-east → eu-
west). We provide the full results of our RTT measurements in Appendix A.2.

150 4. Data Handling Requirements-aware Cloud Infrastructure

Figure 4.26 In our microblogging use case,
adding DHRs to tweets delays query comple-
tion by only 18 % to 24 %.

Figure 4.27 For the email storage use case,
accounting for compliance with DHRs adds
only little overhead to QCTs.

Microblogging

Microblogging services such as Twitter often utilize cloud storage systems to store
messages. To evaluate the impact of PRADA on such services, we use the database
layout of Twissandra [Twi15], an exemplary implementation of a microblogging ser-
vice for Cassandra, and real tweets from the twitter7 dataset [YL11]. For each user,
we uniformly at random select one of the storage locations and attach it as DHR to
all tweets. We perform our measurements with a replication factor of r = 1 and mea-
sure the QCTs for randomly chosen users for retrieving their userline (most recent
messages of this user) and their timeline (most recent messages of all users a user
follows). To this end, we insert 2 million tweets from the twitter7 dataset [YL11]
and randomly select 1000 users among those users who have at least 50 tweets in
our dataset. For the userline measurement, we request 50 consecutive tweets of each
selected user. As the twitter7 dataset lacks follower relationships, we request 50
random tweets across all users for the timeline measurements of each selected user.

Our results in Figure 4.26 show that the runtime overhead of supporting DHRs for
microblogging in a globally distributed cluster corresponds to an 18 % increase in
QCT for fetching the timeline and 24 % for retrieving the userline. Here, PRADA
especially benefits from the fact that identifiers are spread along the cluster and thus
the unmodified Cassandra also has to contact a large number of nodes. Our results
show that PRADA can be applied to offer support for DHRs in microblogging at
reasonable costs with respect to query completion time. Especially when considering
that likely not each tweet will be accompanied by DHRs, this modest overhead is well
worth the additional functionality that supports users in protecting their privacy.

Email Storage

As we have seen by the results uncovered by MailAnalyzer (cf. Section 3.2), email
providers increasingly move storage of emails to the cloud. To study the impact of
supporting DHRs on emails, we analyzed Cassandra-backed email systems such as
Apache James [Apa18b] and ElasticInbox [Ela13] and derived a common database
layout consisting of one table for metadata (for creating an overview of a complete

4.3. PRADA: Practical Data Compliance for Cloud Storage 151

mailbox) and one table for full emails (for fetching individual emails). To create
a realistic scenario, we utilize the Enron email dataset [KY04], consisting of about
half a million emails of 150 users. For each user, we uniformly at random select one
of the available storage locations as DHR for their emails and meta information.

Figure 4.27 compares the mean QCTs per operation of Cassandra and PRADA for
fetching the overview of the mailbox for all 150 users and fetching 10 000 randomly
selected individual emails. For fetching of mailboxes, we cannot derive a difference
between Cassandra and PRADA as QCTs are dominated by the transfer of metadata
(up to 28 465 rows). The large confidence interval result from the small number of
operations (only 150 mailboxes) and huge differences in mailbox sizes, ranging from
35 to 28 465 messages for different users. When considering the fetching of individual
messages, we observe an overhead of 47 % for PRADA’s indirection, increasing query
completion times from 103 ms to 152 ms. Hence, we can provide compliance with
DHRs for email storage with an increase of 47 % for fetching individual emails, while
not increasing the time for generating an overview of a mailbox.

4.3.4 Summary and Future Work

Accounting for compliance with data handling requirements, i.e., offering control
over where and how data is stored in the cloud, has become increasingly important
due to legislative, organizational, or customer demands. To address this issue, we
have proposed PRADA, which empowers users to specify a comprehensive set of
fine-grained DHRs and enables cloud storage operators to enforce them. Our results
show that we can indeed achieve support for DHRs in cloud storage systems. Of
course, the additional protection and flexibility offered by DHRs come at a price:
We observe a moderate increase for query completion times and still manageable
bandwidth demands while achieving constant storage overhead and upholding a
near optimal storage load balance. Notably, data without DHRs is not impaired
by PRADA. Hence, users can choose (even at a granularity of individual pieces of
data), if DHRs are worth a modest performance decrease.

PRADA’s design is built upon a transparent indirection layer, which effectively han-
dles compliance with DHRs and hence realizes the goals that any approach to realize
compliance with DHRs in cloud storage systems have to fulfill (cf. Section 4.3.1.3).
First, PRADA realizes comprehensiveness by supporting any DHRs that can be ex-
pressed using our formalized notion of DHRs. Notably, this enables PRADA to also
support future and as of now unforeseen requirements. With respect to our goal of
minimal performance impact, PRADA’s indirection introduces an overhead of 0.5
RTTs for read, update, and delete operations. Further reducing this overhead is
likely only possible by encoding some DHRs in the key used for accessing data, but
this requires everyone accessing the data later on to be in possession of the DHRs,
which we consider an unrealistic assumption. A fundamental improvement could be
achieved by replicating all relay information to all nodes in the cluster, but this is
viable only for small cloud storage systems and does not scale.

We argue that indirection can likely not be avoided, but still pose this as an open
research question. Considering cluster balance, the overall achievable load balance

152 4. Data Handling Requirements-aware Cloud Infrastructure

highly depends on how well nodes’ capabilities to fulfill certain DHRs match the
actual DHRs requested by users. However, for a given scenario, PRADA is able to
achieve nearly optimal load balance (cf. Section 4.3.3.3). Finally, PRADA realizes
coexistence by not modifying the processing of data that is inserted without attached
DHRs. As seen in Section 4.3.3.2, this indeed ensures that data without attached
DHRs is not impaired by PRADA as evidenced by identical results with respect to
query completion time, required storage space, and consumed bandwidth.

With respect to future work, we mainly identify two different promising directions.
First, PRADA’s initial design is centered around key-value based storage systems
and we consider it promising to extend our approach to other storage systems
that are based on different paradigms. For example, Google’s globally distributed
database Spanner (rather a multi-version database than a key-value store) allows
applications to influence data locality (to increase performance) by carefully choos-
ing keys [CDE+13]. PRADA could be applied to Spanner by modifying Spanner’s
approach of directory-bucketed key-value mappings. Likewise, PRADA could real-
ize data compliance for distributed main memory databases, e.g., VoltDB, where
tables of data are partitioned horizontally into shards [SW13]. Here, the decision
on how to distribute shards over the nodes in the cluster could be taken with DHRs
in mind. Similar adaptations could be performed for commercial products, such
as Clustrix [Clu18], that separate data into slices. From a different perspective,
our work on realizing PRADA intentionally focuses on realizing the functionality
to support compliance with DHRs within cloud storage systems. Orthogonally to
this approach stands the question on how users can be provided with assurance
that a cloud provider indeed enforces their DHRs. On a general level, this question
has been widely studied [ABF+04, PGB11, MNP+11, OSGJ13, VEM+15]. However,
further work—both on the conceptual and technical level—is required to actually
apply the proposed approaches such as audit logging, information flow control, and
provable data possession (cf. Section 4.3.1.4) to our design of PRADA.

To conclude, PRADA resolves a situation, i.e., missing support for DHRs, that is dis-
advantageous to both users and providers of cloud storage systems. By offering the
enforcement of arbitrary DHRs when storing data in cloud storage systems, PRADA
enables the use of cloud storage systems for a wide range of clients who previously
had to refrain from outsourcing storage, e.g., due to compliance with applicable
data protection legislation. At the same time, we empower cloud storage operators
with a practical and efficient solution to handle differences in regulations and offer
their services to new clients. Hence, PRADA provides a valuable foundation for our
overarching goal of realizing DHRs-aware cloud infrastructure.

4.4 Conclusion

Given the opaque legislation and the lack of control in today’s cloud computing
infrastructure, we laid out our vision of a data handling requirements-aware cloud
stack. To this end, we proposed to annotate data with DHRs before it is sent to
the cloud. This empowers users to express their privacy requirements with respect

4.4. Conclusion 153

to the handling of their data in the cloud and at the same time enables cloud
providers to incorporate users’ requirements while handling their data. To realize
this goal, we identified the need to realize two fundamental underlying approaches:
(i) a mechanism for users to express their DHRs and hence annotate their data
accordingly before it is sent to the cloud and (ii) an approach for providers of cloud
infrastructure—specifically cloud storage systems—to incorporate users’ DHRs when
mapping data to actual storage nodes.
To enable users to express their DHRs, we introduced CPPL, a compact privacy
policy language specifically tailored to the characteristics of cloud computing. The
core idea of CPPL is to compress a textual, human-readable specification of DHRs
using flexibly specifiable domain knowledge into a size and processing efficient com-
pressed representation that is optimized down to the bit-level. Notably and unlike
related work, CPPL can directly work on the compressed representation of DHRs
when interpreting policies at cloud nodes. Our evaluation not only showed that
CPPL indeed achieves huge savings with respect to storage and transmission sizes
(up to two orders of magnitude compared to related work) but is also able to process
several thousands of compressed policies per second in real-world scenarios. Hence,
CPPL constitutes a valuable foundation for our vision of a DHRs-aware cloud stack
as it enables users to express their privacy requirements on a per-data item level
and thus make cloud providers aware of their users’ demands at a fine granularity.
Once users are able to express their DHRs using CPPL, cloud providers have the
necessary information to incorporate user demands into their allocation of resources.
To this end, PRADA realizes a cloud storage system that offers rich and practical
support for users’ DHRs by storing a specific data item only on those cloud nodes
that fully comply with the attached DHRs, e.g., expressed using CPPL. To showcase
the feasibility and applicability of PRADA, we implemented it on top of the widely-
deployed distributed database Cassandra. Our evaluation of PRADA shows that the
additional offered functionality results in a moderate increase in query completion
times as well as a small constant storage overhead while keeping the storage load
of the nodes that form the cloud storage system as balanced as possible under the
constraints imposed by users. Notably, PRADA does not impair the performance of
data that is inserted without attached DHRs. PRADA’s ability to store data only
on cloud nodes that fulfill users’ DHRs hence is a practical foundation for providing
the cloud storage infrastructure required in a fully DHRs-aware cloud stack.
To conclude, in this chapter, we addressed the research question on how infrastruc-
ture providers can support service providers and cloud users in executing control
over privacy. Hence, our contributions presented in the chapter mainly tackle the
core problems of opaque legislation and missing control, thereby paving the way to
a less centralized deployment model by making cloud resources more interchange-
able and integrating privacy requirements into the process of cloud brokerage. Our
concepts and results presented in this chapter highlight the feasibility of realizing
a fully DHRs-aware cloud stack that gives users control over their privacy by en-
abling cloud infrastructure providers to incorporate user demands while mapping
data to their distributed infrastructure. Notably, the results derived in this chapter
can serve as an important foundation to realize privacy-preserving cloud services,
e.g., in the context of the IoT, as presented in the next chapter. Furthermore, the

154 4. Data Handling Requirements-aware Cloud Infrastructure

concepts underlying both CPPL and PRADA can also be applied to a fully decen-
tralized approach to cloud computing where cloud services are deployed in a secure
peer-to-peer manner as we introduce in Chapter 6.

5
Privacy-preserving Cloud Services for
the Internet of Things

In this chapter, we target the research question on how service providers can realize
privacy-preserving cloud services on top of cloud infrastructure without influence
on the underlying resources. To this end, we use the Internet of Things (IoT) as
application domain for cloud services with high privacy requirements [ZGW14].

We first motivate the need for privacy-preserving cloud services for the IoT [HHK+14,
HHMW14, HHMW16] and deduce the individual components that are required to
enable developers of cloud services to account for privacy (Section 5.1). Based on a
security architecture for IoT data in the cloud [Mat13,See13,HHM+13,HHMW14],
we present SCSlib [Ber14, HBHW14], a security library that enables non-security
experts to develop privacy-preserving cloud services that operate on encrypted IoT
data in a cryptographically enforced access control system (Section 5.2).

Subsequently, we introduce D-CAM [Wol14, HWM+17], a distributed approach to
configuration, authorization, and management of devices and networks in the cloud-
based IoT that puts users back in control over their cloud-managed IoT devices
as well as networks (Section 5.3). Finally, we wrap up this chapter with a brief
summary and discussion (Section 5.4).

5.1 Motivation

As already outlined in Section 2.4, we observe that the increasing deployment of
IoT networks—ranging from home networks to industrial automation—leads to a
similarly growing demand for storing and processing collected data. To satisfy this
demand, the most promising approach is the utilization of the dynamically scal-
able, on demand resources made available by cloud infrastructure. More specifically,

156 5. Privacy-preserving Cloud Services for the Internet of Things

cloud solutions simplify storage and processing of collected data, utilization of the
same data within several services, as well as combining data from several users and
supporting user mobility without information fragmentation over different systems.

However, while the integration of IoT networks with cloud computing environments
is a striking proposition, the desired interconnection is far from trivial as sensed
data often contains sensitive information that third parties may strive to exploit (cf.
Section 2.4.2). For example, IoT readings from an industrial deployment can provide
competitors with valuable information about the employed equipment and its degree
of capacity utilization, thus providing them with a competitive advantage. Likewise,
IoT readings from a pervasive healthcare system such as Internet-connected heart
rate monitors embedded into smartwatches might prove valuable for health and life
insurance companies to increase a person’s fee or even deny a new contract [Boy17].

Moreover, sensitive information may not only be contained in the sensed data itself
but could also be derived from the corresponding meta information, e.g., location
information can be used to accurately track a user [PHW17]. As a result, owners
of IoT deployments typically prefer to refrain from unconditionally revealing their
sensed data to others, especially in the face of the numerous privacy threats and
risks of cloud computing (cf. Section 2.3).

When outsourcing processing and storage of potentially sensitive IoT data to the
cloud, we require a practically viable security architecture that enables users to stay
in control over their data. To this end, any security architecture that targets this
goal has to offer technical measures to (i) protect potentially sensitive IoT data
already within the IoT network where it is still under control of the user, (ii) guar-
antee confidentiality and integrity of IoT data after it has left the IoT network,
and (iii) offer user-centric access control of IoT data for trustworthy services. As
a foundation for our contributions presented in this chapter, we rely on a trust
point-based security architecture that fulfills these goals (we provide an overview
of the important components of this security architecture in Section 5.2.2.2). We
face two important challenges when applying this security architecture to realize
privacy-preserving cloud services for the IoT.

First, the necessary security mechanisms are not transparent to cloud services and
implementing them is a labor-intensive and error-prone task [SPP01]. However and
especially in the context of the IoT, developers of cloud services are domain experts
and typically do not specialize in security [Coo18]. Consequently, they should be
relieved from having to realize the required security functionality on their own.

Second, such a cloud-based security architecture considerably increases the config-
uration, authorization, and management effort of users, especially if they operate
multiple IoT networks. While it might seem natural to also offload these tasks to the
cloud, we postulate that outsourcing the configuration, authorization, and manage-
ment of IoT devices and networks to the cloud poses privacy and security threats.
These threats are especially relevant since IoT devices often provide safety-critical
functionality [Sta14]. Thus, we require additional security mechanisms that enable
users to conveniently control their federated IoT networks and still offer protection
against malicious entities that may strive to take over control of devices and thus
harm privacy and safety.

5.2. SCSlib: Transparently Accessing Protected IoT Data in the Cloud 157

5.1.1 Contributions

To address these two challenges and thus enable the realization of privacy-preserving
cloud services for the IoT, we present the following two contributions.

1) We present SCSlib, a security library that transparently handles all security func-
tionality required to access protected IoT data and thereby unburdens service de-
velopers from having to implement security functionality such as decryption and
signature verification themselves. SCSlib relies on a widely-applicable, standards-
based approach to represent and protect IoT data in the cloud. Notably, SCSlib
does not require any security expertise from cloud service developers and, at the
same time, is sufficiently flexible to satisfy a wide range of performance and secu-
rity requirements. Our evaluation results obtained on public cloud infrastructure
not only show the applicability of SCSlib but also demonstrate a meaningful
performance gain for sequential and random access to IoT data in the cloud
compared to naïvely implementing the required functionality.

2) With D-CAM, we introduce a distributed architecture that enables users to se-
curely configure, authorize, and manage their IoT devices across network borders
by using the cloud as a highly available and scalable storage for control messages.
Thereby, D-CAM ensures that only authorized parties can configure a user’s IoT
devices. Most notably, even a malicious cloud provider cannot tamper with the
configuration of IoT devices. To illustrate the feasibility of D-CAM, we fully
implement a working prototype and extensively quantify the incurred process-
ing and storage overheads. Our results show that D-CAM can easily scale to
networks with hundreds of devices. To further increase the privacy of users in
the cloud-based IoT, we additionally provide a mechanism for confidentiality of
configuration, authorization, and management messages.

5.2 SCSlib: Transparently Accessing Protected IoT
Data in the Cloud

We consider a scenario in which operators of IoT networks (i.e., private users, com-
panies, or public institutions) connect their IoT networks to the cloud to benefit from
its virtually infinite storage and processing resources [HHCW12, EHH+14]. There,
cloud-hosted services selected by the operator of the IoT network operate on the out-
sourced IoT data. Similar to modern smartphones, these services can be provided by
essentially anyone in a cloud service marketplace. Services either exclusively operate
on the data from one IoT network or combine the data of several networks and users
to realize functionality that would not be possible in an isolated setting, where the
individual IoT networks are not interconnected with the cloud.

However, as IoT data often contains sensitive information, privacy concerns become
a major challenge when interconnecting IoT networks with the cloud. Importantly,
traditional transport security mechanisms between data sources and the cloud do
not suffice to protect IoT data in an end-to-end manner as such channel security
is typically terminated at the entry point to the cloud, leaving data unprotected

158 5. Privacy-preserving Cloud Services for the Internet of Things

within the cloud. In contrast, object security, i.e., protection of individual data
objects, between data sources and cloud services affords for the required end-to-end
protection of outsourced IoT data.

Applying object security in the context of the cloud-based IoT comes with two
inherent challenges. First, IoT data can originate from a wide variety of IoT nodes
and thus can be arbitrarily structured, substantially complicating the application
of object security mechanisms. Consequently, cloud services have to be informed
how data has been protected to successfully decrypt and verify the integrity and the
authenticity of the received data. Second, object security operates at the application
level. Hence, contrary to transport security, object security is not a transparent
security mechanism for cloud services. However, implementing the necessary security
mechanisms is a laborious and error-prone task. Thus, developers of cloud services
should not need to be responsible for realizing security functionality as they often
are not experts in security [Coo18].

To address these challenges, we first show how recent progress in standardization can
provide the basis for protecting data from different IoT devices when outsourcing
data processing and storage to the cloud. These efforts serve as the foundation for the
discussion of our trust point-based security architecture that realizes object security
between IoT networks and cloud services based on fine-grained, user-centric data
access control. Subsequently, we present our Sensor Cloud Security Library (SCSlib),
which enables cloud service developers to transparently access cryptographically
protected IoT data in the cloud. SCSlib specifically allows domain specialists who
are not experts in security to realize privacy-preserving cloud services. To ease the
reproducibility of our results and to provide a foundation for other research efforts,
we provide the source code of SCSlib under the open source MIT license9.

5.2.1 The Cloud-based IoT and Privacy

In the following, we concretize our general network scenario for the cloud-based
IoT (cf. Section 2.4.1) and introduce the relevant entities involved as well as their
interactions. Furthermore, we identify implications of the outlined scenario with
respect to privacy as well as security and discuss related work.

5.2.1.1 Scenario and Entities

In our work, we consider a scenario where each IoT network (with an arbitrary num-
ber of IoT devices) is connected to the cloud via a dedicated gateway as depicted in
Figure 5.1. Each user maintains a network consisting of IoT nodes that continuously
produce IoT data. The user is in possession of any IoT data that is produced within
her IoT network domain and outsources the storage and processing of her IoT data
to a cloud computing environment. This cloud computing environment is operated
by an infrastructure provider and we assume this environment to be public, i.e., the
infrastructure provider offers its infrastructure to anyone who is willing to pay for

9https://code.comsys.rwth-aachen.de/redmine/projects/scslib

5.2. SCSlib: Transparently Accessing Protected IoT Data in the Cloud 159

Figure 5.1 Users upload their IoT data to the cloud, which is realized on resources operated by
the infrastructure provider. Service providers deploy their services on top of the cloud, which
allows users to authorize selected services to access their IoT data.

it. The infrastructure provider is able to monitor any component of its infrastruc-
ture, e.g., for maintenance purposes. In addition to the mere infrastructure, the
infrastructure provider offers a storage service for IoT data as well as execution en-
vironments for cloud-hosted third party services that process outsourced IoT data.
The individual cloud services are offered by service providers.

As already discussed in Section 2.4, data collected by IoT devices often contains
personal information and outsourcing it to the cloud thus raises privacy concerns.
Consequently, it is imperative that the user remains in control over who has access
to her data. To this end, IoT data stored in the cloud should only be accessible by
authorized entities. More specifically, only those cloud services that have explicitly
been authorized by the user to access (parts of) her IoT data should be able to
retrieve and process said IoT data. Thus, we require a mechanism for users to
authorize cloud services to access a specified set of their IoT data. Subsequently,
any security architecture then has to enforce that indeed only authorized cloud
services can gain access to the IoT data of a user.

5.2.1.2 Security and Privacy Considerations

As a foundation for protecting privacy when outsourcing potentially sensitive IoT
data to the cloud, we first lay out our underlying security and privacy assumptions.
Regarding the local IoT network, we assume that IoT data is adequately protected
against local network-level attacks. For example, existing ZigBee security mech-
anisms [Zig12] could be employed for ZigBee-based IoT networks. For IP-based
IoT networks, as currently advocated by standardization bodies [MHCK07, Zig13],
traditional IP security solutions could be deployed by modifying the correspond-
ing protocols with respect to the device and network constraints prevalent in the
IoT [HHHW13,HHW+13b,HHS+18].

Once IoT data leaves the protected IoT network and is transported via the Internet,
we also have to consider external attackers, who may try to manipulate or eavesdrop
on the communication with the cloud computing environment. Thus, the confiden-
tiality as well as the integrity of IoT data and of management-related communication
between the IoT network and the cloud has to be protected. Furthermore, consider-
ing the multi-tenancy characteristics of cloud computing, the user requires her IoT
data not to be revealed to an entity that she did not explicitly authorize. Specifically,

160 5. Privacy-preserving Cloud Services for the Internet of Things

a user’s IoT data must not be accessible by other users sharing the storage facilities
of the cloud. Likewise, neither the infrastructure provider nor unauthorized services
must be able to access stored IoT data. Any modification of stored IoT data must
be perceivable by either the user or a service processing this data.

To this end, we assume that the infrastructure provider is following an adversary
model similar to that of an honest-but-curious adversary (cf. Section 2.3.2). As such,
it will operate technology, services, and interfaces as contractually agreed and will
not perform active attacks to spy into running services. However, it might try to
learn as much as possible about the processed information and it might not guarantee
long-term confidentiality of stored information. For example, the infrastructure
provider has full control over its hardware and, therefore, can inspect the memory of
its physical machines for sensitive information as long as data processing is performed
by services on plaintext IoT data. However, contractual obligations and liabilities
can render such inspections unattractive for the infrastructure provider as shown by
the US government’s use of Amazon’s AWS GovCloud offer [AWS18c].

Likewise, by strictly restricting access to its monitoring capabilities to a small num-
ber of trusted administrators who must be located within the data center, the in-
frastructure provider can mitigate the risk of exposure due to attacks against its
monitoring facilities. The service providers, on the contrary, are generally consid-
ered less trustworthy. This is due to the fact that the user cannot control which
services are offered by the cloud and those services may actively try to gain uncon-
strained access to IoT data that is not meant for disclosure to them. Outside entities
must be considered malicious adversaries (cf. Section 2.3.2) that may perform ar-
bitrary actions with to break into communication flows and hence gain access to
confidential IoT data.

To back up these assumptions, we require the infrastructure provider to separate the
execution of its infrastructure and the cloud services running on top of it from other
third party cloud services. To this end, the infrastructure provider may, e.g., employ
special virtual machine placement policies that do not map other cloud services
to the same physical machines that are used to realize privacy-preserving services
for the IoT. Likewise, we require that the infrastructure provider enforces strict
separation of execution environments for individual services running on the same
physical machine, e.g., using containers, to prevent cloud services from interfering
with each other. Furthermore, to gain at least a certain level of trust in cloud
services, the infrastructure provider or another trusted third party can perform
audits of cloud services before they are made available to users. This process is
similar to the approach taken by today’s app stores on smartphones.

5.2.1.3 Related Work

To address the privacy and security considerations stated above and to mitigate
the anticipated loss of control over IoT data once it is stored and processed in the
cloud, early approaches in the area of combining the IoT with cloud computing—
especially in the area of healthcare and ambient assisted living—identified that pro-
viding privacy and security guarantees is a crucial cornerstone. To this end, Rolim

5.2. SCSlib: Transparently Accessing Protected IoT Data in the Cloud 161

et al. [RKW+10] propose an approach for patient data collection in healthcare insti-
tutions based on cloud computing that provides security with respect to confiden-
tiality of transferred data, authentication, and authorization. Likewise, Zhang and
Zhang [ZZ11] realize a secure platform for the cloud-based IoT in the context of am-
bient assisted living and telemedicine that relies on rudimentary security measures
such as transport security and authentication using passwords.

To secure health data when it is outsourced to the cloud, Lounis et al. [LHBC12]
particularly focus on guaranteeing confidentiality and integrity of outsourced med-
ical data with minimum management and processing overheads. Thilakanathan et
al. [TCN+14] propose a platform that realizes mobile telecare by allowing doctors
to remotely monitor patients. For this, they rely on the cloud as a central data
store which requires them to take special care of security, confidentiality, and access
revocation. In a similar context, Li et al. [LYZ+13] and Liu et al. [LHL15] propose
approaches for realizing the scalable and secure sharing of personal health records
using the cloud. To secure the health records in this setting, they make use of
attribute-based encryption respectively signcryption. In contrast to our work, rely-
ing on attribute-based encryption introduces non-negligible performance penalties
and makes revocation of access rights costly.

On a more general scale, other researchers focus on securely outsourcing general-
purpose IoT data to the cloud. Pooja et al. [PPP13] realize the protection of IoT
data already within the IoT network. To further increase the security of outsourced
data, they make use of two separate clouds for storing the encrypted IoT data respec-
tively the keying material needed for decryption. In different scenarios, architectures
utilizing a trusted third party similar to our trust point-based security architecture
have been proposed. However, these approaches are typically restricted to securing
the transport of data and do not consider the object security that is crucial to our
scenario. The Federal Office for Information Security in Germany [Fed14] specifies
a trusted gateway to guarantee privacy in intelligent energy networks. Our security
architecture shows some similarities to this approach. However, our architecture
allows a much more fine-grained access control for data. There are also a number of
architectures involving a trusted third party that have been proposed in the context
of cloud computing. Kamara and Lauter [KL10] propose an architecture similar to
ours with respect to a trusted gateway encrypting outbound data and managing
access policies. However, they do not consider the secure processing of data in the
cloud. Additionally, they require the requesting of access tokens from the gateway
to access data. Thus, in contrast to our approach, data stored in the cloud is only
available when the gateway is reachable.

The Twin Clouds architecture proposed by Bugiel et al. [BNSS11] utilizes garbled
circuits for encrypting both data and programs in a trusted environment before
passing them to the untrusted public cloud. After a costly setup phase, which has
to be performed per data item, computations can be executed obliviously in the
untrusted cloud. However, the encrypted programs are limited to simple operations
and require re-encryption after each execution. Pearson et al. [PMCR11] introduce a
cloud design similar to ours that focuses on fine-grained access control for outsourced
data. While their approach focuses on sticky policies that have to be enforced by a

162 5. Privacy-preserving Cloud Services for the Internet of Things

trusted third party, our solution introduces a flexible design for object security for
IoT data in the cloud.

All these approaches consider security aspects when outsourcing (IoT) data to the
cloud. However, they do not consider flexible configuration of security mechanisms
and a transparent access to protected IoT data for cloud services. Still, flexible
configuration of security mechanisms is required to support different application
scenarios, while transparent data access allows also non-security experts to develop
cloud services. To enable flexible configuration of security mechanisms, Itani and
Kayssi propose SPECSA [IK04], a policy-driven security architecture. Their policy
format allows specifying which parts of a message have to be protected. However,
they assume messages with a fixed structure and use the same encryption key for
all parts of the same security level. Consequently, their approach is not suitable for
the cloud-based IoT scenario, as this scenario requires fine-grained, flexible access
control. Likewise, several approaches for supporting developers by abstracting from
security paradigms have been proposed. GSSAPI [Lin00] provides security services
to protect the communication between two entities. However, in our scenario, we
require security at the granularity of objects instead of communication channels to
protect IoT data also during storage. JSAL [HWZ04] is a security aspect library that
requires developers to apply security measures manually, hence requiring expertise
in the area of security. On the contrary, our approach does not require service
developers to be security experts.

To conclude, there is a need for protecting IoT data and providing a security ab-
straction layer for accessing protected IoT data in the cloud that allows non-security
experts to develop privacy-preserving cloud services.

5.2.2 Protecting IoT Data in the Cloud

To protect IoT data when it is outsourced to the cloud and thus lay the foundation
for providing a security abstraction layer to cloud services, we now present our trust
point-based security architecture for IoT data in the cloud. To this end, we first
have a closer look at the flow of IoT data in the cloud-based IoT scenario. Then,
we introduce the trust point, a logical entity for protecting potentially sensitive IoT
data already within the local IoT network and thus still under the control of the
user. Finally, we discuss measures for representing diverse IoT data and protecting
it until it reaches an authorized cloud service.

5.2.2.1 Flow of IoT Data

We now describe a typical flow of IoT data in our scenario prior to any secure
measures and provide a high-level description of the involved processing steps as
shown in Figure 5.2. A data flow commonly starts within an IoT network and
consists of periodically generated data items. In other words, a data item is an
atomic fragment of an IoT data stream and represents the reading of one IoT node
at a specific point in time. The payload of a data item consists of one or more

5.2. SCSlib: Transparently Accessing Protected IoT Data in the Cloud 163

Figure 5.2 Data items consist of meta information (header) and data fields (DF) that represent
individual sensed values. The gateway performs preprocessing steps on data items and uploads
them to the cloud. Authorized services can then access the data items.

data fields which contain the measured values from individual sensors deployed on a
specific IoT node. Additionally, data items contain a header with meta information
such as the time and location of measured values.

Within the IoT network, the individual IoT nodes forward data items to a gateway
device which is used to bridge between IoT and Internet protocols and is responsible
for uploading IoT data to the cloud for further storage and processing. Consequently,
all data items generated inside the IoT network traverse the gateway as the last
entity situated inside the IoT network. As a network element, the gateway may be
limited with respect to storage and processing resources. Thus, it may neither be
able to store large amounts of IoT data nor perform excessive computational tasks.

After an IoT data item is received at the entry point to the cloud, it is stored
persistently in the storage backend of the cloud. In addition to this storage service,
the cloud also offers a platform for services. This cloud platform hosts third party
services that process data items. To start this processing for (a fraction of) her
IoT data, the user authorizes individual services to perform the processing of her
relevant data items (at the granularity of individual data fields). The authorized
services then request the corresponding data items from the cloud and process these
data items. Finally, the user can access the results of the processing via an external
service interface such as a website or a mobile app or have the results stored in the
cloud, possibly again encrypted.

5.2.2.2 Trust Point-based Security Architecture

All devices within an IoT network are under the control of the user who operates
this network. However, once IoT data leaves the IoT network, the user loses control
over her data. Thus, the gateway marks the border of the user’s control or privacy
sphere. The central idea of our security architecture is to enhance this user-operated
gateway with additional mechanisms that enable the secure outsourcing of IoT data
to the cloud. More precisely, our enhanced gateway pre-processes the generated IoT
data on behalf of the user and applies confidentiality as well as integrity protection
before uploading the protected IoT data to the cloud. As this enhanced gateway
device is owned and thus trusted by the user, we call it the trust point.

164 5. Privacy-preserving Cloud Services for the Internet of Things

Figure 5.3 Transport security is terminated as soon as data reaches the cloud entry point. To
protect IoT data between cloud entry point and service, we additionally employ object security.

As shown in Figure 5.3, the trust point manages the upload of IoT data to the
cloud as it is the gateway device of the IoT network. Since the communication
between the trust point and the cloud traverses the Internet, the transport channel
between the trust point and the cloud has to be secured. This is not only required to
provide confidentiality of the transferred information but also to ensure the mutual
authentication of the two communication peers. Thus, the trust point can be sure
that it is indeed communicating with the cloud. Similarly, the cloud can verify the
identity of the trust point and thus the user.

However, mere transport protection does not suffice to protect the transmission and
storage of IoT data in the cloud as transport protection is terminated at the cloud
entry point (cf. Figure 5.3). At this point, the transport security mechanisms are
stripped from the IoT data. Without further protection, plain data would reside
unprotected within the cloud environment. To still achieve end-to-end security from
the trust point to an authorized service, even during storage, the trust point adds
additional object security mechanisms to the IoT data before transmitting it securely
to the cloud. To this end, the trust point encrypts individual data fields and signs
each data item before sending it towards the cloud. The plain information carried
by IoT data can now neither be accessed nor undetectably modified by an unautho-
rized third party. Furthermore, the additional integrity protection cryptographically
guarantees the accountability of IoT data to a specific user, i.e., cloud services can
be sure that data indeed originates from this user.

This approach to object security is similar to digital rights management (DRM)
[BBGR03] when considering cloud services as end-user devices in the DRM case.
However, the main difference is that we do not require enforcement of data ac-
cess control on the service side. The straightforward and most efficient solution
for confidentiality protection is symmetric key encryption, e.g., using AES. While
we focus on symmetric key encryption in the following, our security architecture
conceptually also supports the use of order-preserving and deterministic encryption
[BW07,PRZB11] to allow for search and sort operations on stored (encrypted) IoT
data (cf. Section 3.4). The integrity protection of our architecture is based on asym-
metric key cryptography. To guarantee integrity of a data item, the trust point signs
it with a private key such that integrity protection covers the complete data item.

To access data items and individual data fields, cloud services require access to the
symmetric keys used to protect data items, which we call data protection keys in
the following. This access has to be authorized by the user. To achieve this goal,

5.2. SCSlib: Transparently Accessing Protected IoT Data in the Cloud 165

the trust point is also responsible for the management of data protection keys. We
discuss in the following how the trust point can manage the data protection keys
despite its restricted storage capacities. Most importantly, we have to empower
users to make an informed decision regarding which cloud services to authorize.
Hence, cloud services have to provide a service description (e.g., in a cloud service
marketplace) which contains high-level information about the purpose of the service
and how the service uses the IoT data provided.

Conformance of the service implementation to the service description must be as-
sured, e.g., through an audit by the infrastructure provider or another trusted third
party, similarly to practices applied in today’s app stores on smartphones. This
conformance is expressed via a cryptographic signature issued by the auditor that
covers the service description and the service’s public key. After verifying this sig-
nature, a user who wants to grant a service access to her IoT data and agrees with
the service description provides the data protection keys used for the protection of
the data fields to the service. This is achieved by instructing the trust point to
encrypt the respective data protection keys with the public key of the service and to
transmit this secured information to a key store located in the cloud. The purpose
of this key store is twofold. First, it offloads the trust point from the burden of
frequent and repeated key requests causing expensive public key operations or the
need to store a large number of keys. Second, it relaxes the requirement that the
trust point needs to be continuously available. In our architecture, connectivity to
the trust point is only necessary to initially grant cloud services access to IoT data.
After this one-time authorization, cloud services can retrieve the data protection
keys from the key store in the cloud and decrypt them using their private keys even
if the trust point is temporarily unavailable.

5.2.2.3 Representation and Protection of IoT Data

Our goal is to store IoT data securely in the cloud such that it can only be processed
by authorized cloud services. To this end, the trust point encrypts sensitive IoT
readings using a symmetric cipher before uploading it to the cloud. The encryption
process is influenced by a user-configurable access control list containing services
that are authorized to (partially) obtain and process the user’s IoT data. Now, only
entities in possession of the data protection key used for encrypting an IoT data
item have access to this specific data item. Consequently, to grant a cloud service
access to a given data item, the trust point has to provide this cloud service with
the corresponding data protection key. To this end, the trust point asymmetrically
encrypts the corresponding data protection key with the public key of the cloud
service that should gain access to the IoT data and forwards the resulting encrypted
data protection key to the respective cloud service(s).

IoT data originating from a single IoT node can contain multiple sensor readings
from different sensors. For example, a data item measured by a meteorological sensor
might consist of multiple single readings such as humidity and temperature. More
specifically, sensed information varies considerably regarding its structure (i.e., the
serialization of measured data and meta information), the number of measurements

166 5. Privacy-preserving Cloud Services for the Internet of Things

Figure 5.4 Users define data fields in a SenML-encoded data item that should be protected us-
ing JSONPath. We use JSON Web Encryption and JSON Web Signature to encode encrypted
data fields, signatures, and data protection keys in a standardized manner.

fields (e.g., a single value for a simple temperature sensor or multiple values in
case of a complex industrial control unit), and the units of these fields (e.g., degree
Celsius or hertz). Likewise, cloud services often only require access to parts of sensor
readings. By supporting the encryption of individual data fields, i.e., parts of IoT
data, we thus realize fine-grained access control.

However, this requires a unified representation of diverse IoT data items. To this
end, we rely on SenML [JSA+17], which has been proposed for standardization at
the Internet Engineering Task Force (IETF). SenML supports JSON, XML, and
Efficient XML Interchange for serializing IoT data. In the following, we focus on the
JSON representation of SenML to showcase our approach. Still, our findings can also
be extended to other data models or other serializations, e.g., XML. Independent
from the actual representation and serialization of IoT data, we identify the following
three essential tasks as depicted in Figure 5.4: 1) identifying those parts in the
serialized IoT data item that should be covered by the protection, 2) performing
the necessary cryptographic operations and augmenting protected IoT data such
that an authorized cloud service can reverse these operations, as well as 3) securely
distributing the employed data protection keys to authorized cloud services. We
discuss these three tasks in more detail in the following.

Specifying Coverage of IoT Data Protection

We assume that we operate on IoT data items that are readily serialized in SenML.
An essential part of protecting such SenML-encoded IoT data items for the cloud
then is to encrypt the contained information. However, encrypting IoT data items
as a whole is infeasible as certain meta information (e.g., IoT node identifier and
timestamp) is required for indexing purposes to afford an efficient retrieval of IoT
data in the cloud. Moreover, such holistic protection would restrict service access
granting to an all-or-nothing approach as all information would be encrypted with
the same data protection key. Especially in industrial settings [JBM+17], however,
it is necessary to break down access granting to individual data fields. This way, the
manufacturer of an industrial machine can, e.g., access certain data for monitoring
the health of the machine operated by one of its clients without getting to know
details about the product that is currently being processed on this machine.

5.2. SCSlib: Transparently Accessing Protected IoT Data in the Cloud 167

Consequently, to provide confidentiality on a fine-grained basis, we require a way to
address parts of an IoT data item. We facilitate JSONPath [Gös07] for this purpose,
which allows us to address arbitrary fields in a JSON object (similar functionality
is offered by XPath for XML). This way, the parts of an IoT data item that should
be encrypted can be specified by the user (Step 1 in Figure 5.4). Notably, digital
signatures that provide integrity and authenticity of the protected IoT data item
cover the entire data item and thus do not require such fine-grained control.

Representation of Protected IoT Data

In the next step, the data fields identified with JSONPath need to be encrypted.
To this end, we use standard symmetric encryption that affords efficient protection
of bulk data. Still, we design our approach to be flexible regarding the employed
symmetric-key primitives and key lengths to allow for scenario-specific security and
performance trade-offs and to account for potential future advances in cryptography
that may lead to certain primitives no longer being considered secure (as often
observed in the past). However, due to this flexibility, simply replacing the plain
value in the IoT data item with the encrypted value is insufficient. Instead, the
cloud services require additional information, e.g., the used encryption algorithm,
an identifier for the used data protection key, or the initialization vector to decrypt
the protected data fields. Hence, this information additionally has to be encoded in
the IoT data item. To express this information, we employ JSON Web Encryption
(JWE) [JH15], which is a standard for representing encrypted content using JSON.
Thus, the plain value in the IoT data item is replaced by a JWE object that contains
the encrypted value and the additional information needed for decrypting this value
(Step 2a in Figure 5.4). Additionally, the integrity and authenticity of the whole
IoT data item should be protected. To this end, the common best-practice is to
use public key signatures. Thus, we require each data source to be in possession
of a public/private key-pair. This can easily be achieved using today’s public key
infrastructures. Similarly to JWE, we employ JSON Web Signature (JWS) [JBS15]
to represent a public-key signature with JSON. To this end, we add a JWS-encoded
signature to the protected IoT data items (Step 2b in Figure 5.4).

Distributing Keying Material

In the final step, we have to distribute the data protection keys to the authorized
cloud services. These keys are needed by the cloud services to decrypt the individual
data fields of an IoT data item. Here, we assume that also each cloud service is in
possession of a public/private key-pair. Again, such functionality can be readily
supplied by today’s public key infrastructures. To grant a cloud service access to
(parts of) an IoT data item, the trust point encrypts corresponding data protection
keys with the public key of the respective service and uploads the result to the
cloud. Here, similar to JWE and JWS, we leverage JSON Web Key (JWK) [Jon15]
to represent the encrypted data protection key in JSON format (Step 3 in Figure 5.4).
Thus, only an authorized service is able to decrypt the data protection key and thus
gain access to the IoT data. Whenever the cloud service requires the data protection

168 5. Privacy-preserving Cloud Services for the Internet of Things

Figure 5.5 When a cloud service requests a protected IoT data item, SCSlib transparently
handles all necessary security operations, i.e., requesting necessary data protection keys from
the cloud, verifying the digital signature, and decrypting individual data fields.

key for decrypting an IoT data item, it queries the cloud for that key and decrypts
it with its own private key. We additionally periodically exchange data protection
keys to increase security [Kra96,EMM06] and to offer time-based fine-grained access
control with respect to these key change intervals. More precisely, users will be able
to provide cloud services access to their IoT data with respect to the time dimension
at the granularity of key change intervals.

5.2.3 Transparent Access to IoT Data for Cloud Services

The processing of IoT data by a cloud service requires the verification of the integrity
of received data, the decryption of the symmetric data protection key, and finally the
decryption of the actual IoT data. However, correctly implementing these necessary
security mechanisms is complicated, especially since developers of cloud services
often are no security experts [Coo18]. Thus, to allow cloud service developers to
access protected IoT data in the cloud without the need to care about decryption,
signature verification, and key management, we introduce the Sensor Cloud Security
Library (SCSlib) that realizes transparent decryption of IoT data and the verification
of data integrity by a cloud service. We realize SCSlib as a C library that builds
upon the cryptographic algorithms implemented by the OpenSSL library [VMC02].

We provide an overview on how SCSlib integrates into the process of cloud services
querying for IoT data in Figure 5.5. In Step 1, the cloud services use the methods
provided by the cloud to request one or multiple IoT data item(s) from the cloud.
Subsequently, the cloud platform returns the requested IoT data item(s) from the
cloud storage in Step 2. To ensure that only authorized cloud services can access the
corresponding data fields, these are encrypted and require decryption before they
can be utilized. To this end, SCSlib requests the necessary data protection keys in
Step 3 and the cloud platform returns these keys from the cloud storage in Step 4. In
Step 5, SCSlib then uses the private key supplied by the cloud service to decrypt the
data protection keys. Hence, SCSlib can now decrypt exactly those data fields the
cloud service is authorized to access in Step 6. Finally, SCSlib returns the decrypted
IoT data item(s) to the cloud service in Step 7.

5.2. SCSlib: Transparently Accessing Protected IoT Data in the Cloud 169

In the following, we discuss our design and implementation of SCSlib in more detail
with respect to the following three main functionalities: (i) interfacing with the
cloud, (ii) processing of IoT data items, i.e., verification and decryption, as well as
(iii) caching of cryptographic keys for performance improvements.

Interfacing with the Cloud

Our design of SCSlib is driven by the goal to provide flexibility and re-usability
on the one hand and transparency for cloud service developers on the other hand.
Hence, we decide to develop a library that can be integrated into a cloud service
SDK such as Google Cloud SDK and Amazon Web Services SDK or alternatively
directly being integrated by the service developer, e.g., if the underlying SDK does
not integrate SCSlib (yet). By integrating SCSlib into SDKs or directly into cloud
services, all security-critical computations take place in the context of the service
and no secrets (e.g., the service’s private key) have to be revealed to third parties (cf.
Section 5.2.1.2). Additionally, this design still enables cloud service developers to
implement (parts) of the necessary cryptographic operations themselves if they do
not (fully) trust the open source implementation provided by SCSlib. Consequently,
we further reduce security and privacy concerns when outsourcing IoT data to the
cloud by increasing transparency over the employed security mechanisms.

For the decryption and verification of IoT data items, SCSlib needs access to the
public key of the data source as well as the data protection keys used for encrypting
the individual data fields. We designed SCSlib to use callback functions, i.e., func-
tionality provided by the cloud service SDK, for retrieving the necessary keys. This
enables each cloud service SDK to implement the communication with the cloud
infrastructure specifically tailored to their individual deployment scenario.

Processing of IoT Data Items

To invoke the processing of a IoT data item, SCSlib provides a slim API that consists
of three public methods: sc_verify_data_item() for verifying the integrity of a
data item, sc_decrypt_data_item() for decrypting a data item, and sc_process_
data_item(), which combines the previous two methods. Cloud services pass data
items to the library as string-encoded JSON objects, which yields a simple and
portable interface. As discussed in Section 5.2.2.3, SCSlib conceptually also supports
other methods for serializing IoT data based on SenML such as XML and Efficient
XML Interchange [JSA+17].

When processing IoT data items, integrity and authenticity of the IoT data item
have to be checked first. To this end, SCSlib looks up the public key of the data
source using the corresponding callback function (see above) and then verifies the
digital signature of the IoT data item using the retrieved public key. To decrypt
the IoT data item, SCSlib iterates recursively over the JSON-serialized object to
search for JWE objects representing an encrypted measurement value. For each
JWE object within the IoT data item, SCSlib requests the data protection key that
is needed to decrypt this data field using the above-described callback function.

170 5. Privacy-preserving Cloud Services for the Internet of Things

Once the data protection key has been received, SCSlib decrypts this key using the
private key provided by the cloud service (see above) and subsequently uses the data
protection key to decrypt the encrypted measurement value. As a result, we retrieve
the original value in the JSON-serialized IoT data item. If a cloud service is not
permitted access to a specific data field, the corresponding data protection key is
not available to this service. Conceptually, there are two options for handling this
exception. Either the still encrypted measurement value can remain in the data item
(which allows the cloud service to notice that it cannot access this specific field) or
it can be removed (which increases performance when parsing the resulting smaller
IoT data item). Our implementation of SCSlib supports both approaches and the
actual behavior can be set via a configuration flag.

Caching of Cryptographic Keys

When processing data items, SCSlib operates on different keys for decrypting mea-
surement values and verifying integrity and authenticity of IoT data items. However,
which specific keys are actually needed cannot be determined before a given data
item is processed, especially when considering random access to IoT data items (i.e.,
data is not accessed in chronological order). Furthermore, since data protection keys
that are needed to access measurement values are encrypted with the public key of
the service, they have to be decrypted before they can be used. Likewise, data pro-
tection keys are often used more than once during a key change interval (cf. Section
5.2.2.3). To prevent unnecessary overhead, we hence strive to request each data
protection key only once and consequently also decrypt each key only once.

To achieve this goal, we introduce internal caches in SCSlib for decrypted data
protection keys as well as public keys of data sources used to verify integrity and
authenticity of IoT data items. As long as a key is present in the cache, SCSlib
does not have to request it from the cloud and, in the case of data protection
keys, decrypt it, again. We show in our evaluation that this has a huge impact on
the overall performance of processing protected IoT data in a cloud service. The
cache size as well as the caching algorithm used by SCSlib can be configured. For
our evaluation of SCSlib, we implemented first in first out (FIFO) and least recently
used (LRU) as cache management schemes. In the context of operating on encrypted
IoT data, FIFO is especially well suited when processing data in isolated batches,
while LRU excels in situations where certain data protection keys are used more
often than others.

5.2.4 Evaluation

To prove the feasibility of our approach and quantify the performance of SCSlib, we
conduct a thorough performance evaluation. As a foundation for this evaluation,
we implement a simple cloud service SDK using the C programming language that
returns requested IoT data items, data protection keys, and data source’s public
keys from a static database as well as a cloud service that triggers the decryption
and verification of IoT data items. For our evaluation, we use the cryptographic

5.2. SCSlib: Transparently Accessing Protected IoT Data in the Cloud 171

Figure 5.6 The mean time for processing one IoT data item with one data field for an unlimited
cache size decreases with increasing key change intervals.

primitives AES with 128 bit keys in CBC mode for encrypting data fields, RSA with
2048 bit keys for encrypting the corresponding data encryption keys, and ECDSA
with the NIST curve P-256 for digital signatures. To allow others to reproduce our
results, we use Amazon Web Services third generation EC2 64 bit instances of type
large (m3.large) [AWS18a] running Ubuntu 12.04 LTS to perform our measurements.
For each measurement point, we conduct 50 measurement runs, each consisting of
the processing of 1000 IoT data items. We depict the average processing time per
data item for these measurements with 99 % confidence intervals in the following.

We first establish a baseline by examining the minimal costs of processing protected
IoT data in the cloud when performing only the absolutely necessary operations.
To this end, we choose cache sizes (cf. Section 5.2.3) such that each key has to
be requested only once. This effectively emulates an infinite cache size. The main
influence factors on the time required for processing of protected IoT data in the
cloud then are the size of the key change interval, i.e., how often the data protection
key for IoT data from the same data source is changed (cf. Section 5.2.2.3), and the
number of data fields, i.e., how many encrypted measurement values are contained
in one IoT data item.

In Figure 5.6, we show the average time for processing one protected IoT data item
with one data field with respect to the key change interval. Here, we use an intuitive
notion of the key change interval, i.e., after how many items the data protection
key is exchanged. The results show that even for a key change interval of 1, the
cloud service is able to process 397 IoT data items per second. For more realistic
key change intervals, this rate increases to more than 900 data items per second
(for a key change interval of 20). Especially for larger key change intervals, the
processing time is then dominated by the verification of the digital signature, which
requires about 0.99 ms irrespective of the key change interval. In addition, parsing
a data item and processing keys only amounts to 0.02 ms. The time needed for
decrypting the IoT data item decreases from 1.51 ms to 0.09 ms when increasing the
key change interval from 1 to 20. In the following, we fix the key change interval to
10, as this constitutes a good trade-off between flexibility (with respect to time-based
fine-grained access control) and performance.

172 5. Privacy-preserving Cloud Services for the Internet of Things

Figure 5.7 The mean time for processing one IoT data item for a key change interval of 10
and an unlimited cache size linearly increases with the number of data fields.

Figure 5.8 SCSlib’s caching approach considerably reduces the overhead for processing pro-
tected IoT data in the cloud, both for random (RND) and especially sequential (SEQ) access
to IoT data when using FIFO (F) and LRU (L) as cache management scheme.

Similar to our measurement setup for increasing key change intervals, Figure 5.7
shows the processing time for one data item with an increasing number of data
fields for a key change interval of 10 and an infinite cache size. Also in this setting,
signature verification constantly accounts for a processing overhead of 0.99 ms. As
expected, the time needed for parsing and decrypting the data item increases lin-
early with the number of data fields from 0.19 ms (0.02 ms for parsing and 0.17 ms for
decrypting) for one data field to 3.21 ms (0.12 ms for parsing and 3.09 ms for decrypt-
ing) for 20 data fields. These numbers show that SCSlib can handle a throughput
of 238 to 846 IoT data items per second depending on the number of data fields in
each data item. Based on these results, we use data items with 10 data fields for our
remaining evaluation, since these adequately represent the performance of a wide
range of realistic IoT data item sizes as we, e.g., observe for the cloud-based IoT
platform dweet.io [Bug18]. The results obtained so far constitute a lower bound
for the processing performance of handling protected IoT data items in the cloud,
to which we compare our caching optimizations in the following.

To this end, we report on the performance of SCSlib with respect to different cache
sizes and cache management schemes for IoT data items consisting of 10 data fields
for a key change interval of 10 in Figure 5.8. We differentiate between the two
cache management schemes FIFO (denoted by “F”) and LRU (denoted by “L”) and

5.2. SCSlib: Transparently Accessing Protected IoT Data in the Cloud 173

vary the cache size between 0 keys (no caching) and 1000 keys (all keys cached).
Furthermore, we consider both, sequential (denoted by “SEQ”) and random (denoted
by “RND”) processing of IoT data. In the sequential case, IoT data is processed in
strict temporal order (which is often observed in real-world scenarios where cloud
services operate on streams of IoT data), while in the random case, IoT data is
processed in an arbitrary, non-deterministic order (which, while rather artificial,
is the most challenging scenario with respect to caching). Our results show that
caching indeed has an enormous impact on performance. With an appropriate cache
size, we achieve a 6-fold reduction in processing time from 15.91 ms to 2.62 ms,
which matches the lower bound we established in our previous measurements (cf.
Figure 5.7). As expected, for sequential processing, we are able to achieve the best
possible performance as soon as the cache size equals or exceeds the number of
simultaneously required data protection keys (in our example, this number is ten,
as we have ten data fields per IoT data item). Likewise, the processing time for
random processing decreases linearly with the cache size, as the likelihood that a
key is still in the cache increases with the cache sizes. Our evaluation also shows
that the performance difference between FIFO and LRU is negligible for the two
considered scenarios.

To conclude our evaluation of SCSlib, the results of our performance evaluation
show that it is feasible to process protected IoT data items in a cloud service.
Through SCSlib, we enable interoperability be abstracting from security function-
ality and thus allow for an open environment and integration with different cloud
offers. Furthermore, due to SCSlib’s caching, we can considerably improve the per-
data item processing time. SCSlib enables non-security experts to develop privacy-
preserving cloud services for the cloud-based IoT. Still, these advantages come with
higher transmission and storage overheads than tailor-made solutions for individual
scenarios. However, these overheads can be minimized by employing optimization
techniques such as data item compression, e.g., using Concise Binary Object Repre-
sentation [BH13] or our compact privacy policy language (cf. Section 4.2).

5.2.5 Summary and Future Work

The cloud-based IoT, i.e., the interconnection of the IoT with the cloud to benefit
from the elastically scalable and always available resources provided by the cloud
computing paradigm, promises to simplify storage and processing of collected IoT
data, enables the utilization of the same IoT by multiple services, and eases the
fusion of IoT data across users. To counter resulting security and privacy concerns,
we presented a best-practice approach for encoding and protecting IoT data in the
context of cloud computing. More specifically, we introduced a trust point-based se-
curity architecture that guarantees object security between IoT networks and cloud
services by cryptographically enforcing a fine-grained and user-centric access con-
trol scheme. The involved security mechanisms, however, are difficult to implement
for cloud service developers who do not specialize in security. Hence, we proposed
SCSlib, a library that enables cloud service developers to transparently access pro-
tected IoT data in the cloud without having to deal with the details of implementing
security mechanisms.

174 5. Privacy-preserving Cloud Services for the Internet of Things

SCSlib is a security library that can be included into cloud service SDKs to transpar-
ently integrate into the process of querying IoT data from the cloud. Since SCSlib is
based on standardized and best-practice approaches for representing and protecting
IoT data, i.e., SenML [JSA+17], JWE [JH15], and JWS [JBS15], it is sufficiently
flexible to satisfy a wide range of performance and security requirements. For ex-
ample, SCSlib can be easily extended to also support IoT data items that have been
serialized using XML or Efficient XML Interchange instead of JSON if need arises.
Likewise, by relying on a standardized expression of security mechanisms, SCSlib
conceptually supports a wide range of different security algorithms. Thus, SCSlib
can adapt to future security requirements, e.g., by migrating to a symmetric cipher
with a higher security level if necessary. Our evaluation of SCSlib performed on
commodity public cloud infrastructure confirms the feasibility of SCSlib, especially
when considering the performance gains of SCSlib’s caching of cryptographic keys for
sequential and random access to IoT data stored in the cloud. By employing caches
for cryptographic keys, SCSlib achieves a 6-fold increase in processing throughput
and is able to process hundreds of encrypted and signed IoT data items per second.

As shown in our performance evaluation, the verification of public key signatures
for integrity protection purposes constitutes a major performance bottleneck of our
current security architecture. Thus, in the future, we plan to investigate more ef-
ficient signature schemes that relieve cloud services from the high computational
burdens implied by public key cryptography. Our idea here is to use hash chains
[Lam81] to amortize the high computation cost of public key signatures across multi-
ple data items. This is similar to the performance optimization for verifying control
messages in D-CAM, our approach for distributed configuration, authorization, and
management in the cloud-based IoT that we present in the subsequent section.

From a different perspective, our current trust point-based security architecture does
not fully support the revocation of once granted data access rights. In our security
architecture, the user can revoke an access policy to prevent a cloud from gaining
access to any IoT data produced in the future. However, to cryptographically revoke
a cloud service’s access to IoT data items already stored in the cloud, these data
items have to be re-encrypted and the resulting data protection keys distributed to
the remaining authorized cloud services. Especially for large amounts of IoT data,
performing this re-encryption of data and re-distribution of keys on the trust point
quickly becomes infeasible. A promising approach is to utilize proxy re-encryption
for performing these steps securely in the cloud [YWRL10]. This concept allows
offloading the necessary expensive computations to an untrusted cloud environment
without revealing any information about the underlying IoT data.

To conclude, with SCSlib we support the secure incorporation of the two technolo-
gies, IoT networks and cloud computing, with respect to the confidentiality of IoT
data. However, when moving towards the cloud-based IoT, also the configuration,
authorization, and management of IoT devices and networks are typically outsourced
to the cloud. This outsourcing does not only raise privacy concerns, but also serious
safety concerns. In the following, we hence propose a distributed architecture that
enables users to securely configure, authorize, and manage their IoT devices across
network borders without having to trust the cloud.

5.3. D-CAM: Distributed Control in the Cloud-based Internet of Things 175

(a) Traditional IoT (b) Cloud-controlled IoT (c) D-CAM
Figure 5.9 Different current IoT deployment models realize configuration, authorization, and
management (a) within isolated IoT networks or (b) centrally in the cloud. In contrast, D-CAM
(c) enables distributed control across network borders without having to trust the cloud.

5.3 D-CAM: Distributed Control in the Cloud-based
Internet of Things

The IoT enables the worldwide interconnection of “smart things” to enhance impor-
tant aspects of everyday life, e.g., in pervasive healthcare, assisted living, and smart
cities (cf. Section 2.4). With SCSlib (cf. Section 5.2), we proposed an approach to
protect the confidentiality of IoT data when sending it to the cloud. However, as IoT
devices can directly influence the physical world (e.g., Internet-connected implanted
medical devices [SRLO15] or robotic arms in factories [AIM10]), it is additionally
important to secure the access to the configuration, authorization, and manage-
ment of these devices to prevent severe physical damage [SRLO15]. As depicted in
Figure 5.9a, in traditional deployments, the control operations of IoT devices and
network are securely realized within individual networks, e.g., via cryptographically
enforced access control lists [LHBC12, PTPS14]. This deployment model allows a
user to efficiently manage and secure a single network within the IoT.

However, there is an increasing trend of interconnecting previously isolated IoT
networks [MSPC12]. This trend ranges from users who want to interconnect their
body area network and home network [HHK+16, SHH+18] to companies bridging
complete factories via the Internet [HG15]. As discussed in Section 2.4, the pre-
dominant approaches to realize such interconnection utilize the high availability and
elastic resources of the cloud. In this setting, as shown in Figure 5.9b, the cloud is
used to facilitate management of networks and devices as well as to configure and
authorize access to devices across network borders. This allows users to configure,
authorize, and manage access to their devices across different networks. More specif-
ically, a user can manage and configure devices in different networks from a single
location without having to take care of the availability and reachability of individual
devices that, e.g., reside behind a firewall.

Besides these enormous benefits, outsourcing configuration, authorization, and man-
agement of (potentially safety-critical) devices to the cloud poses huge security and
privacy threats. These threats range from a curious cloud provider accessing con-
fidential data to a malicious provider gaining physical control over safety-critical

176 5. Privacy-preserving Cloud Services for the Internet of Things

devices. This includes rogue employees of the cloud provider and possible security
breaches, jeopardizing the security and privacy of all cloud-controlled devices [CN12].

Hence, we deem it important to tackle the challenge of securely realizing configura-
tion, authorization, and management in the cloud-based IoT. Due to the potential
severity of attacks enabled by physical control, our prevalent focus lies in prevent-
ing a malicious cloud provider from controlling IoT devices. This focus further
extends upon the security assumptions underlying SCSlib (cf. Section 5.2.1), where
it is sufficient to protect the confidentiality of IoT data. To this end, we present
D-CAM, our approach for achieving distributed configuration, authorization, and
management across network borders as depicted in Figure 5.9c. D-CAM runs on
the user-controlled gateways of individual networks and enables users to configure
their complete federation of IoT networks from each of these networks. In contrast
to entirely configuring IoT networks centrally in the cloud, D-CAM reduces the
cloud to act as a highly available and scalable proxy for storing and forwarding
tamper-resistant control messages. Thus, we achieve a reasonable trade-off between
the advantages of the cloud-based IoT and strong security and privacy guarantees.

5.3.1 Controlling IoT Networks

We begin by providing an overview of our envisioned network scenario. From this
scenario, we derive the challenges of securely achieving configuration, authorization,
and management for cloud-interconnected IoT networks and discuss related work.

5.3.1.1 Network Scenario and Problem Analysis

In traditional IoT deployments, a network of IoT devices is connected to the Internet
(and possibly the cloud) via a gateway controlled by the user (cf. Section 5.2.1.1).
In rare cases, an IoT device directly acts as the gateway. We assume that the com-
munication within the IoT network is properly secured (cf. Section 5.2.1.2), i.e., the
internal IoT network communication provides confidentiality, integrity, and authen-
ticity protection. To allow for interaction with an IoT network over the Internet in
this setting, it needs to be properly configured. This involves (i) configuration of
individual IoT devices, (ii) authorization of access to these devices (e.g., for sensing
and actuating), and (iii) management of the overall IoT network and its structure.
In the following, we refer to these operations as control operations. Handling control
operations is well-studied for traditional single-network deployments. Such networks
are typically configured on the single user-controlled gateway that connects to the
Internet and thus is predestined to enforce all control-related tasks. For example,
as the gateway manages connections to the Internet, it will only forward legitimate
requests received from Internet hosts to the IoT devices in its network.

However, as the IoT evolves, we observe an increasing trend for bridging several IoT
networks over the Internet. Yet, conveniently and consistently managing a federated
IoT network is challenging. In a naïve approach, SSH or VPNs could be used to
remotely control small groups of IoT networks. However, this requires gateways

5.3. D-CAM: Distributed Control in the Cloud-based Internet of Things 177

to be addressable (not behind a firewall or NAT) and available (not offline, e.g.,
due to an unreliable wireless uplink) at configuration time, which is an unrealistic
assumption for dynamic environments such as the IoT. Current state-of-the-art
approaches [LVCD13, BDPP16] thus propose to steer control operations from the
cloud. Using the cloud as a central hub to manage IoT devices of one user across
network borders eliminates the need for managing each network separately and for
setting up remote management solutions. In this setting, the user sends control
messages to the cloud, which will relay them to all gateways in the user’s federated
IoT network (if a gateway is offline, it will be updated as soon as it comes back
online). Such control messages can be sent in a variety of formats and protocols,
e.g., using CoAP, SNMP, or NETCONF [SG16]. Hence, such systems need to be
agnostic to the specific format and protocol used for control operations.

5.3.1.2 Security and Privacy Analysis

While the cloud enables the owner of a federated IoT network to perform control
operations conveniently and efficiently, this comes at the price of security and privacy
risks. In cloud-based systems, the prevalent security assumption is that the cloud
provider can be partially, but not fully, trusted. Specifically, the cloud provider is
typically considered to be semi-honest or honest-but-curious (cf. Section 2.3.2). That
is, it will not disrupt the execution of the protocol and is thus limited to passively
gathering information. Most importantly, a cloud provider, under these assumptions,
will not tamper with messages it is supposed to relay. This is a widespread and
reasonable assumption if the primary goal is to only protect the confidentiality of
data. However, as the IoT connects the physical world to the Internet, security in
the cloud-based IoT is not only about the privacy of information but additionally
requires to guarantee (physical) safety. As a severe example, an adversary could
remotely gain control over a pacemaker to modify a patient’s heart rate [GZ15] after
gaining access to the cloud. Consequently, only assuming an honest-but-curious
cloud provider when considering control operations in the cloud-based IoT does not
offer adequate protection for safety-critical tasks.

To illustrate this issue, we derive a set of severe attacks a dishonest cloud provider
(or rogue employees and entities attacking the cloud) can launch in addition to those
of an honest-but-curious cloud provider in the following.

Modification Attack: Changing messages before forwarding them, e.g., to replace
parameters in a configuration message.

Insertion Attack: Creating new messages and sending them to devices in the net-
work, e.g., to gain access to a specific device. This class of attacks also includes
duplication of legitimate messages (also referred to as replaying) to cause an incon-
sistent system state.

Reorder Attack: Changing the order of messages before distributing them in the
network, e.g., to change the semantics of the requests contained in the messages.

Withhold Attack: Deciding to (temporarily) not pass on certain messages to the
network, e.g., to block the deauthorization of access to devices.

178 5. Privacy-preserving Cloud Services for the Internet of Things

These attacks have in common that they can lead to severe consequences, e.g., if the
cloud provider (or an employee or someone attacking the cloud provider) uses them
to gain control over an actuator in the physical world. To account for these attacks
in addition to protecting the privacy of data, we assume a malicious-but-cautious
cloud provider (cf. Section 2.3.2) and design our system accordingly. In this attacker
model, the cloud provider can launch any attack as long as this leaves no evidence.
Notably, this does not necessarily imply that the cloud provider indeed behaves
maliciously. Rather, it acknowledges that the cloud provider (or an employee) can
potentially behave maliciously or be subject to attacks. Neglecting the resulting
attack vectors would, e.g., enable attackers to gain control over devices in the user’s
IoT network. This attacker model is especially well-suited for our scenario, as cloud
providers face serious consequence if misconduct is detected.

In this work, we do not aim to protect against insider attacks at the user side,
e.g., originating from hacked gateways within the IoT network. Still, we show that
D-CAM provides accountability, i.e., misbehavior of gateways (through errors or
attacks) can be identified, which at least enables users to react to insider attacks.

5.3.1.3 Related Work

Different directions of research offer valuable input for our goal of securely realizing
distributed control in the cloud-based IoT. We structure our discussion of related
work by the following three main directions of research: (i) controlling access to
data in the cloud-based IoT, (ii) secure audit logs, and (iii) blockchain approaches.

Access Control in the Cloud-based IoT. Similar to the efforts underlying our
security library SCSlib (cf. Section 5.2), several approaches to control access to
data in the cloud-based IoT have been proposed and we briefly recap the most
relevant approaches here. These approaches typically encrypt data before uploading
it to the cloud and perform access control through selectively releasing decryption
keys. In the context of health data, Lounis et al. [LHBC12] leverage attribute-based
encryption to distribute decryption keys, where a trusted third party globally defines
access rights. Similar approaches for health data in the cloud have been proposed
by Li et al. [LYZ+13] and Jahan et al. [JRSJ15] using attribute-based encryption,
Thilakanathan et al. [TCN+14] based on a secure data sharing protocol, and Liu et
al. [LHL15] by employing attribute-based signcryption.

On a more general scale, our trust point-based security architecture (cf. Section
5.2) constitutes a generic security architecture for outsourcing the storage and pro-
cessing of IoT data to the cloud. In this setting, the user can grant cloud services
fine-grained access to IoT data. To further increase security, Pooja et al. [PPP13]
propose to separate storage and processing of IoT data by using two independent
cloud infrastructures. In all of these approaches, access control is solely performed to
protect the confidentiality of data and does not additionally consider the potentially
safety-critical access to actuation capabilities. This problem is addressed by Picazo-
Sanchez et al. [PTPS14], who securely implement a publish-subscribe approach for
medical body area networks and realize fine-grained access control for commands
sent to an IoT device. Their ciphertext-policy attribute-based encryption scheme

5.3. D-CAM: Distributed Control in the Cloud-based Internet of Things 179

induces a processing overhead in the order of seconds compared to D-CAM’s over-
head in the order of milliseconds.

Furthermore and in contrast to our work, these approaches do not consider the secure
federation of IoT networks across network borders. They either require a central
trusted entity to perform access control [LHBC12,PPP13,LYZ+13,TCN+14,LHL15]
or realize access control completely within isolated networks [PTPS14]. In contrast,
D-CAM realizes full configuration, authorization, and management in the cloud-
based IoT across networks. Porambage et al. [PBS+15] propose two group key
establishment schemes to realize secure multicast in the IoT. Their scheme, however,
does not consider many-to-many messages and the management of gateway groups.

Secure Audit Logs. From a different perspective and not specifically focused on
the cloud-based IoT, secure audit logs aim at protecting integrity and authentic-
ity of log files produced for auditing purposes [SK99]. Schneier and Kelsey [SK99]
present a generic secure logging scheme that affords to detect any deletion or mod-
ification attempts even on a compromised host. Improving upon these results, Ma
and Tsudik [MT09] introduce the concept of forward-secure stream integrity for se-
cure audit logs specifically created and stored on untrusted hosts. Snodgrass et
al. [SYC04] focus on tamper detection for log files of database management systems.
Waters et al. [WBDS04] propose an encrypted and searchable audit log that also
protects confidentiality of log file entries and still allows searching for log entries
under encryption.

Although these approaches do not consider a distributed setting, i.e., multiple enti-
ties contributing to a log, they provide us with valuable input. Especially searchable
encryption offers insights for future work to decrypt only relevant messages when pro-
cessing the message log. Considering a distributed setting, Accorsi [Acc10] proposes
a black box based on trusted computing to ensure authenticity and confidentiality
of log entries. From a different perspective, Chong et al. [CPH03] propose to rely
on tamper-resistant hardware to create secure audit logs in the context of DRM.

In contrast, we neither require an additional entity that can become a single point
of failure nor have to rely on trusted hardware components. Addressing the issue of
trusted third parties for verifying audit logs in distributed systems, BAF [YN09] real-
izes publicly verifiable forward secure and aggregate signatures. However, BAF still
requires an offline trusted third party for guaranteeing audit log integrity. Specif-
ically focusing on cloud computing, SecLaaS [ZDH13] enables the release of cloud
users’ audit logs, e.g., to aid forensic investigations, while still protecting the privacy
of log entries. These approaches, however, are specifically tailored to log files and
do not support the management of IoT networks.

Blockchain Approaches. Finally, our approach shares similarities with blockchain
approaches, i.e., massively replicated histories of accepted messages, which are cryp-
tographically linked using hash chains. In these systems, a distributed consensus
protocol ensures the integrity of messages in the blockchain [CD16].

Bitcoin [Nak08] uses a blockchain to store monetary transactions. It has been ex-
tended to implement decentralized lookup stores [ANSF16] and access control sys-
tems [ZNP15] by embedding configuration messages into the blockchain. Matzutt

180 5. Privacy-preserving Cloud Services for the Internet of Things

et al. [MHH+16,MHH+18,MHZ+18] show that a blockchain originally designed for
financial transactions such as Bitcoin can be used as a general purpose content store.
Using one of the mechanisms to insert data into Bitcoin’s blockchain, Catena [TD17]
realizes a non-equivocation log of application-specific statements.

Lately, blockchain-based systems have also been proposed to manage the IoT. Chris-
tidis and Devetsikiotis [CD16] report on a number of different isolated approaches
where the blockchain is mainly utilized to clear payments. In contrast, Shafagh et
al. [SBHD17] propose a system where the blockchain is used to afford for auditable
storage and sharing of IoT data. In contrast to blockchain approaches, D-CAM’s in-
herently strong trust within gateway groups operated by the same user eliminates the
need for costly consensus protocols such as block mining in Bitcoin. Performance im-
provements proposed for Bitcoin, such as block pruning or leader election [EGSR16],
are similar to storage optimizations we propose for D-CAM. However, in contrast the
optimizations for D-CAM, block pruning still requires verifying the whole blockchain
when joining the system.

5.3.2 Distributed Configuration, Authorization and Management

The goal of our work is to overcome the identified security and privacy challenges
by realizing distributed configuration, authorization, and management (control op-
erations) in the cloud-based IoT in the presence of a malicious-but-cautious cloud
provider. To this end, we present D-CAM, our solution that bases on hash chains [Lam81]
to create a distributed administrated log of control messages encoding configuration,
authorization, and management operations. This allows us to create a secure time-
line [MB02] of these control messages, which can be verified by any gateway in the
federated IoT network. To this end, we first focus on achieving integrity as well as
availability of control messages. We describe how to additionally achieve message
confidentiality in Section 5.3.5.

In the following, we first provide an overview of D-CAM’s design. Based on this, we
describe how messages are appended to D-CAM’s message log and how a federation
of IoT networks can be managed based on D-CAM’s paradigms. Then, we discuss
how the integrity and authenticity of the message log can be verified. Finally, we
show how the message log can be compacted to reduce storage space.

5.3.2.1 Design Overview

D-CAM operates in a scenario where multiple IoT networks are interconnected via
the cloud to form one larger, virtual IoT network (cf. Figure 5.9c). As each individual
IoT network is connected to the cloud via a dedicated user-controlled gateway, their
interconnection requires the federation of said gateways, which we refer to as a
user’s gateway group. The task of D-CAM is the reliable distribution of control
operations to all gateways in a gateway group in the presence of a malicious-but-
cautious cloud provider. We assume that each gateway has a cryptographic identity,
i.e., a public/private key-pair, and is controlled by the user owning the IoT network.

5.3. D-CAM: Distributed Control in the Cloud-based Internet of Things 181

Figure 5.10 D-CAM’s design centers around a message log which allows gateway group mem-
bers to append new messages and verify the contained messages.

At the core of D-CAM resides a distributedly managed, cloud-hosted message log
for each gateway group to which each gateway in the corresponding gateway group
can append messages as illustrated in Figure 5.10. Furthermore, each gateway can
verify the integrity and the authenticity of the message log. Messages in the message
log immediately reflect control operations, i.e., (i) the configuration of devices in the
IoT network, (ii) the authorization of access to the sensing and actuation capabilities
of IoT devices, and (iii) the management of the IoT network itself.

As our focus lies on realizing the secure distribution of arbitrary control messages
in federated IoT networks, we deliberately abstract from specific approaches for
configuring individual IoT devices (e.g., CoAP, SNMP, or NETCONF). Furthermore,
control messages in D-CAM also include the management of the gateway group
itself, i.e., adding and removing gateways. Finally, D-CAM employs log trimming
to make the process of joining a gateway group more efficient. Essentially, the
message log constitutes a complete history of all control operations that were ever
issued to manage one federated IoT network. In summary, D-CAM’s message log is
maintained in a distributed manner within a gateway group and—for the purpose
of configuration, authorization, and management of IoT devices and networks—the
cloud is reduced to a highly available message store and relay.

5.3.2.2 Appending to the Message Log

The target of D-CAM is to ensure that only authorized gateways can append control
messages to the message log. Furthermore, no unauthorized entity should be able to
modify, reorder, or remove messages. To achieve this goal, we protect control mes-
sages with a combination of sequence numbers, a hash chain, and digital signatures
as shown in Figure 5.11.

In the following, we describe the process of appending one message to the message
log and from now on refer to the gateway appending the message as its initiator. To
avoid message collisions, the initiator first reads the sequence number of the most
recent message, increments it by one, and adds it to the new message (dashed line
in Figure 5.11). If two gateways simultaneously append a message, they will use the
same sequence number and hence D-CAM is able to detect and resolve the collision
as follows: The gateways in the gateway group accept only the message of the older
group member (any other deterministic tie-breaker works as well due to the strong

182 5. Privacy-preserving Cloud Services for the Internet of Things

Figure 5.11 Each message in the message log is digitally signed by the originating gateway.
All messages in the message log are interlinked via a hash chain.

trust assumptions within gateway groups) and ignore the second message. The
unsuccessful gateway retries to append its message after processing the accepted
message and updating its sequence number. This way, all collisions are resolved
deterministically within the gateway group.

Furthermore, the initiator creates a checksum that covers the message itself as well as
the checksum of the directly preceding message using a cryptographic hash function
(solid line in Figure 5.11). Thereby, we create a hash chain [Lam81] that crypto-
graphically links all messages in the message log. Due to the preimage resistance of
cryptographic hash functions, messages can neither be altered nor reordered without
invalidating the hash chain. The first message in the message log contains a random
initialization vector instead of the previous checksum.

To enable other gateways in the gateway group to verify the integrity and authen-
ticity of a message, the initiator digitally signs each message using its private key.
This signature covers the checksum and thus also ensures integrity and authenticity
of all previous messages. Subsequently, the initiator sends the message to the cloud,
where it is stored and distributed to all gateways in the gateway group. Gateways
that are offline or temporarily unavailable will update to the latest version of the
message log as soon as they come back online.

Optimization. Creating reasonably secure digital signatures leads to a non-negligible
performance overhead, as observed in our evaluation of SCSlib (cf. Section 5.2.4).
Hence, with D-CAM we aim to reduce the amount of required digital signatures
without diminishing the security level. We observe that in IoT deployments control
messages often arrive in batches, e.g., if the user configures new devices or changes
authorization of device access. If a gateway appends a batch of messages to the
message log, it will add a digital signature only to the last message and send the
complete batch to the cloud. The integrity and authenticity of the other messages
in the batch is still guaranteed by the hash chain. We show in our evaluation that
this enables us to considerably reduce D-CAM’s processing costs.

5.3.2.3 Management of Gateway Groups

D-CAM uses the message log to secure the management of gateway groups, i.e., to
ensure that only authorized gateways participate in a gateway group. Thus, D-CAM
provides the same security level for the management of gateway groups as for regular

5.3. D-CAM: Distributed Control in the Cloud-based Internet of Things 183

control operations. We differentiate between four group management operations:
(i) creation of a gateway group, (ii) adding gateways to a group, (iii) removing
gateways from a gateway group, and (iv) termination of a gateway group.

When creating a federated IoT network, the user also creates a new gateway group.
To do so, she connects to one of her gateways and creates the gateway group, as well
as a corresponding message log with a random initialization vector. To announce
the creation of this new group and add itself as the first group member, the gateway
creates an initial message using the initialization vector as identifier. Once the initial
message has been stored in the cloud, the gateway group has been created.

To add another gateway to her gateway group, the user connects to the new gateway
and creates a join request that is stored in the cloud (outside the message log).
Now, she can connect to any gateway in her gateway group to review and accept the
pending join request, thereby validating the public key of the joining gateway. To
complete the process of adding the gateway to the gateway group, a group member
appends a message to the message log that grants the public key of the new group
member the right to append messages to the message log. Now, the new gateway is
a full member of the gateway group.

Removing gateways from a gateway group in D-CAM works similarly to adding
gateways. Any member of the gateway group can append a message to the message
log that removes another gateway from the gateway group by revoking its public key.
Upon receiving this message, the remaining members will not accept any further
messages signed by the removed entity.

Finally, to terminate a gateway group once it is no longer needed, any member of the
gateway group can append a special tombstone message to the message log. This
tombstone message signals to all members of the gateway group that the group has
been dissolved and no further messages to the message log will be accepted.

IoT devices themselves can also be managed with D-CAM. Here, D-CAM addition-
ally stores routing information in the message log, i.e., to which gateway a device is
connected. Furthermore, D-CAM’s design is flexible enough to also store additional
configuration parameters regarding the devices in a gateway group if need arises.

Optimization. In certain scenarios, it might not be desirable to allow each gateway
group member to perform control operations, e.g., if a gateway is deployed in an
untrustworthy or physically exposed environment. Hence, D-CAM also supports
passive gateways, i.e., gateways that can only be configured using D-CAM but cannot
initiate control operations. Gateways suspected to be especially vulnerable thus do
not jeopardize the security of the whole network if they are compromised.

5.3.2.4 Verifying the Message Log

Whenever a gateway receives a message batch from the cloud, D-CAM must verify
the integrity and authenticity of each individual message in this message batch.
To this end, the gateway verifies messages one after the other in sequential order.
When processing a message, the gateway first verifies the message’s checksum by

184 5. Privacy-preserving Cloud Services for the Internet of Things

computing the hash value over the message and the previous message’s checksum.
Then, the gateway reads the public key of the message’s initiator from a local cache.
This cache is updated whenever a non-passive gateway is added to or removed from
the gateway group (cf. Section 5.3.2.3). This ensures that only messages originating
from currently authorized gateway group members are accepted as valid messages
by the gateways in a gateway group. Finally, the gateway verifies the message’s
digital signature and continues with the next message.

If the verification of a message fails, D-CAM drops this message and stops verifying
the message log. We deepen our discussion on how D-CAM deals with verification
errors as part of our security discussion in Section 5.3.3.

Optimization. In duality to appending messages, the processing time for verify-
ing a control message is dominated by the effort required for checking the digital
signature. Again, our scheme based on hash chains allows us to selectively employ
an optimization. D-CAM can verify message batches by iteratively checking the
checksum of each message but verifying only the signature of the last message in
the message batch. With this optimization, we can guarantee the correctness of
all messages in the batch only after verifying the last message. Thus, the batch
size constitutes a trade-off between improved verification time and required buffer
space as well as more complicated recovery in case of verification failures. Notably,
this does not constitute a trade-off between security and performance, as the digital
signature in combination with the preimage resistant hash chain commits to the
integrity and authenticity of the complete message log.

5.3.2.5 Trimming the Message Log

The cumulated amount of control messages generated by a gateway group steadily
increases over time. This becomes problematic as gateways joining a gateway group
after a while need to process an excessive amount of messages to catch up with the
current network state. At the same time, we observe that older control messages are
often obsoleted by new messages, e.g., when overwriting a configuration or revoking
an authorization. To leverage this potential for space reduction, D-CAM trims the
message log by starting a new message log based on the network state at the time
of trimming, thereby pruning all obsoleted control messages. This trimming allows
for notably shorter bootstrapping times for new gateways, as they now do not have
to process all messages that were ever issued to a gateway group anymore.

A dedicated gateway group member (e.g., the oldest) constantly keeps track of the
amount of obsolete messages in the message log. To this end, this group member
checks for each new message whether it obsoletes, i.e., overwrites, an old message. If
the amount of obsolete message exceeds a specific threshold (depending on the group
or device), the dedicated gateway trims the message log. To trim the message log,
the gateway uploads a complete snapshot of the current network state to the cloud
and adds a snapshot message to the message log. The snapshot message contains
the snapshot’s storage location and the hash value of the snapshot. When a new
gateway joins a gateway group, it is provided with the hash over the latest snapshot
and thus only has to verify the message log starting from the latest snapshot.

5.3. D-CAM: Distributed Control in the Cloud-based Internet of Things 185

5.3.3 Security Discussion

Based on our description of D-CAM’s design, we now briefly discuss how D-CAM
protects against the attacks we identified (cf. Section 5.3.1.2) and hence guarantees
integrity and authenticity of control operations in the cloud-based IoT.

Modification Attack. Digital signatures ensure that no unauthorized entity, e.g.,
a malicious cloud provider, can modify a message. Any modification will invalidate
the message’s signature and is easily detectable by any group member, causing
a malicious-but-cautious cloud provider to refrain from launching this attack (cf.
Section 2.3.2). Even with our optimization to not sign each message, we can easily
detect mismatches in the hash chain even if only non-signed messages are modified.

Insertion and Reorder Attacks. No unauthorized entity can append new messages
to the message log as they are unable to create valid digital signatures. Replaying,
i.e., duplicating legitimate, signed messages, is prevented as this would imply re-
curring sequence numbers and checksum mismatches in the hash chain. The same
detection strategy can be used for preventing reordering attacks, which would result
in a mismatch in sequence numbers and a broken hash chain.

Withhold Attack. In contrast, detecting withholding of messages requires addi-
tional effort. We briefly outline two approaches: First, the members of a gateway
group can use a side channel (e.g., by directly contacting each other) to periodically
exchange status information, i.e., the sequence number and checksum of the latest
message. Second, and without a side channel, each gateway can periodically append
a heartbeat message to the message log, indicating that currently no updates are to
be expected. As gateway group members need to be updated to the latest version
to append to the message log, they will detect missing heartbeat messages, which
indicates either a gateway failure or a withhold attack. This approach’s overhead
can be parameterized by adjusting the heartbeat frequency. Furthermore, its storage
overhead can be limited by trimming older heartbeats (cf. Section 5.3.2.5).

Further Security Considerations. When adding gateways to a gateway group,
the cloud provider might withhold or modify join requests. The user will immedi-
ately notice such attacks when reviewing join requests (cf. Section 5.3.2.3). When
trimming the message log, the snapshot stored in the cloud cannot be modified as
the hash value cryptographically binds the snapshot to the message log (cf. Sec-
tion 5.3.2.5). Although not specifically designed to protect against insider attacks,
D-CAM provides a tamper-resistant log of all control operations. Thus, we can de-
tect misbehavior (e.g., device defects or attacks) and blame the originating gateway.
As a consequence, the misbehaving gateway can, e.g., be expelled from the group.

To conclude, D-CAM’s approach of a cryptographically protected message log offers
protection against the identified attacks, even against powerful adversaries such as
a malicious-but-cautious cloud provider. Attack attempts are detected by D-CAM,
which prevents, e.g., physical harm. Hence, users can launch countermeasures and
collect evidence of attacks. In the following, we show that this strong level of pro-
tection comes at modest costs in terms of processing and storage overheads.

186 5. Privacy-preserving Cloud Services for the Internet of Things

5.3.4 Evaluation

To prove the feasibility of D-CAM and quantify its performance, we evaluate its
processing, storage, and communication overheads. Based on these results, we com-
pare D-CAM to other remote management approaches such as VPNs or SSH and
discuss D-CAM’s performance as well as scalability. As a basis for our evaluation,
we implemented a prototype for the gateway in the C programming language.

We rely on OpenSSL 1.0.1k for the cryptographic operations, libjansson 2.7 for
serializing messages using JSON, and MySQL 5.5 for persistently storing state at
the gateways, e.g., the list of gateways in the gateway group. As an exemplary
embedded device for the gateway, we chose the Raspberry Pi Model B+ with a
700 MHz ARM11 processor, 512 MB of RAM, and Raspbian Jessie Linux as the
operating system.

To properly select the employed cryptographic primitives, we followed the recom-
mendations of NIST [Bar15]. More precisely, we use SHA-256 as hash function and
two different digital signature schemes with the same security level (to enable their
comparison): RSA with 2048 bit keys and ECDSA with the NIST curve P-256.

5.3.4.1 Processing Overhead

First, we evaluate the processing overhead for appending messages to and verifying
messages in the message log. We refer to a signing interval of k if a gateway signs
on average each k-th message (cf. optimization in Section 5.3.2.2). Analogously,
a verification interval of k means that a gateway on average checks the digital
signature of each k-th message (cf. optimization in Section 5.3.2.4). For each result,
we perform 30 runs, each consisting of the processing, i.e., appending or verifying,
of 10 000 control messages. In the following, we show the mean processing time
for one message with 99 % confidence intervals. We distinguish between the time
required for creating, respectively verifying the hash chain and the digital signature,
including parsing and serializing messages, and the lookup of public keys.

Appending to the Message Log

The processing time for a gateway to append one control message to D-CAM’s
message log is influenced by the signing interval and the message length.

First, we vary the signing interval between 1 and 25 and fix the message length
to 2500 byte, which allows to encode even larger control messages. Our results in
Figure 5.12 (note the logarithmic scale) show that the processing time for creating
the hash chain does not depend on the signing interval while the time for creat-
ing the digital signatures considerably decreases for an increasing signing interval.
Especially for smaller signing intervals, we see that ECDSA strongly outperforms
RSA as expected due to their different performance asymmetries. For a signing
interval of 20, using RSA allows a gateway to append 202 messages/s compared to

5.3. D-CAM: Distributed Control in the Cloud-based Internet of Things 187

Figure 5.12 The mean processing time for appending a message of length 2500 byte to the
message log depends on the signing interval. Increasing the signing interval reduces the average
time spend in the predominant signing operation.

Figure 5.13 The mean processing time for appending a message of varying payload size to
the message log with a signing interval of 20 and a group size of 1 increases roughly linearly
with the payload size.

1052 messages/s for ECDSA. Furthermore, we observe only little additional sav-
ings for increasing the signing interval beyond 20, especially when using ECDSA as
signature scheme.

Hence, we now fix the signing interval to 20 and vary the message length between 500
and 10 000 byte in steps of 500 byte. In Figure 5.13, we observe that the processing
time increases roughly linearly with increasing message sizes. This is mainly due to
an increased time for creating the checksum for longer messages. Again, we observe
a superior performance of ECDSA compared to RSA as expected. For a message size
of 500 byte, we can process 228 messages/s with RSA compared to 2004 messages/s
with ECDSA. This decreases to 154 messages/s using RSA and to 388 messages/s
using ECDSA for a larger message size of 10 000 byte.

Verifying the Message Log

The processing time for verifying a control message in D-CAM’s message log depends
on the verification interval and the message size. Additionally, the processing time
might be influenced by the number of gateways from which the control messages in
the message log originate, as each gateway uses a distinct public key.

188 5. Privacy-preserving Cloud Services for the Internet of Things

Figure 5.14 The mean processing time for verifying one control message of size 2500 byte in
the message log depends on the verification interval. By increasing this interval, the average
time spent for the predominant operation for verifying the digital signature is reduced.

Figure 5.15 The mean processing time required for verifying a control message with a verifi-
cation interval of 20 and a group size of 1 scales roughly linearly with the payload size. This
is mainly due to the effort required for verifying the correctness of the hash chain.

To study the influence of the verification interval on the processing time, we vary the
verification interval between 1 and 25 and fix all other parameters. More specifically,
we fix the message size to 2500 byte and the gateway group size to 1. As shown
in Figure 5.14, the processing time required for verifying the hash chain does not
depend on the verification interval while the processing time required for verifying
digital signatures decreases with an increasing verification interval as expected. Here,
RSA benefits from the performance asymmetry and outperforms ECDSA. For a
verification interval of 20, RSA enables us to verify 1007 messages/s compared to
only 641 messages/s for ECDSA. Increasing the verification interval beyond 20 offers
only little additional performance gains.

Thus, we now set the verification interval to 20 while keeping the group size at 1 and
evaluate the impact of varying the message size between 500 and 10 000 byte in steps
of 500 byte. We depict the resulting processing time for verifying control messages
in Figure 5.15. The processing time required for verifying one control message
increases approximately linearly with an increasing message size. This stems from
an increase in the processing time required for verifying the hash chain checksums
and validating the digital signature. We again notice a superior performance of RSA
over ECDSA. Using RSA allows a gateway to verify 1840 messages/s compared to

5.3. D-CAM: Distributed Control in the Cloud-based Internet of Things 189

Figure 5.16 The number of gateways that append control messages to the message log has
a negligible impact on the mean processing time required for verifying one message of length
2500 byte in the message log with a verification interval of 20.

888 messages/s using ECDSA for control messages with a size of 500 byte. For a
control message size of 10 000 byte, these numbers decrease to 387 messages/s for
RSA and 315 messages/s for ECDSA, respectively.

Next, we analyze the impact of the number of gateways from which the control
messages in the message log originate on the processing time required for verifying
control messages. We fix the verification interval at 20, the message size to 2500 byte,
and increase the number of gateways that append control messages to the message
log from 1 to 100. In this setting, gateways append messages on a rotating basis,
i.e., the first gateway will append its second message only after all other gateways
have appended a message. Our results in Figure 5.16 show that the verification
time does only negligibly depend on the number of gateways from which the control
messages in the message log originate. More specifically, ECDSA is able to verify
58 messages/s both for 1 gateway and 100 gateways, while the processing time for
verifying control messages with RSA shows a subtile decrease from 180 messages/s
for 1 gateway to 177 messages/s for 100 gateways.

Remarks

Setting both signing and verification interval to 20 constitutes a reasonable trade-off
between processing time and required buffer space for verification. Furthermore,
if the goal is to optimize performance of appending messages in D-CAM, ECDSA
is preferable over RSA. However, RSA shows a superior performance for verifying
messages. Here, it is important to note that for a gateway group of size n, a control
message has to be verified by n gateways while it is appended only once. Thus,
especially for larger gateway groups, selecting RSA as digital signature scheme is
recommended. Notably, the number of gateways from which the control messages in
the message log originate does not perceivably influence the processing time required
for verifying messages. This behavior is expected as long as we can keep the public
keys of all these gateways in memory. Even on a resource-constrained Raspberry Pi,
we can easily cache the public keys of hundreds of gateways.

190 5. Privacy-preserving Cloud Services for the Internet of Things

Figure 5.17 The relative per-message storage and communication overhead of D-CAM reduces
with increasing message size.

5.3.4.2 Storage and Communication Overhead

To analyze the storage and communication overhead of D-CAM as well as the influ-
ence of trimming the message log, we rely on analytical methods and simulations.

Per-Message Storage and Communication Overhead

The per-message storage and communication overhead of D-CAM stems from the
space required for encoding header fields (e.g., sequence number and gateway iden-
tifier), the checksum that realizes the hash chain, and the digital signature. More
precisely, for our choice of cryptographic primitives, the storage and communica-
tion overhead of D-CAM consists of 36 byte for encoding the header, 32 byte for the
checksum, plus 258 byte for encoding an RSA digital signature respectively 72 byte
for encoding an ECDSA digital signature. We show the resulting storage overhead
for increasing message sizes in Figure 5.17. As the sizes of the header, checksum,
and digital signature stay constant for varying message sizes, this overhead decreases
from 65.2 % for messages of size 500 byte to 3.3 % for messages of size 10 000 byte
when using RSA and from 28 % for messages of size 500 byte to 1.4 % for messages
of size 10 000 byte when using ECDSA.

Influence of Trimming the Message Log

The behavior of D-CAM’s trimming approach depends on the number of obsolete
messages in the message log. We study this behavior with a simulation approach
where we consider control message logs of size up to 100 000 messages and let D-CAM
trim the message log whenever it observes at least 5000 obsolete messages (the
specific amount is one of D-CAM’s parameters). We iteratively append messages,
where each inserted message may obsolete a previous one with a probability of
p = 0, 0.2, ..., 1. In Figure 5.18, we compare the number of messages a joining
gateway has to process to the optimal number, i.e., only non-obsoleted messages.
Each experiment was conducted 1000 times with real random seeds [Wal96] and we
depict the mean amount of messages that have to be verified by the joining gateway.

5.3. D-CAM: Distributed Control in the Cloud-based Internet of Things 191

Figure 5.18 The influence of trimming the message log depends on the probability of messages
being obsoleted (p = 0, 0.2, ..., 1). D-CAM at most incurs a fixed overhead, whose precise
value is a configurable parameter of D-CAM (here: trimming after 5000 obsolete messages).

We omit confidence intervals to ease readability, as the 99 % confidence intervals for
the mean amount of messages that have to be verified are below 204 messages for
all values. Indeed, our results show that D-CAM at most incurs a fixed overhead of
5000 messages. Furthermore, the number of trimming operations required (indicated
by the drops of the blue line in Figure 5.18) directly scales with the probability of
obsolete messages, ranging from 20 when messages are always directly superseded
(p = 1) to 0 if new messages never replace old messages (p = 0).

Remarks

Our evaluation of D-CAM’s storage and communication overhead leads to two ob-
servations. First, if reducing the storage and communication overhead of D-CAM is
the primary optimization goal, using ECDSA as signature scheme is the preferable
choice. Notably, the resulting storage and communication overhead can further be
reduced by increasing the signing interval (cf. Section 5.3.2.2). Second, when con-
sidering the amount of messages that need to be processed by a new gateway joining
a gateway group, D-CAM’s optimization to periodically trim obsolete messages re-
sults in at most a constant overhead compared to an optimal solution that directly
deletes any obsoleted messages.

5.3.4.3 Comparison to Remote Management Approaches

Although D-CAM provides more functionality, e.g., group management and a veri-
fiable audit log, than established remote management approaches such as VPNs or
SSH, it is still interesting to see how D-CAM performs compared to said approaches.
As our goal is to achieve a consistent configuration of the whole federated IoT net-
work, a comparable solution based on VPNs or SSH requires one connection from
each gateway to each other gateway to reliably and consistently communicate all
control operations. In a network of N gateways, this results in sending N messages
for each control operation and adding as well as maintaining N new connections
for each new gateway. Considering bandwidth constraints of gateways, e.g., mobile

192 5. Privacy-preserving Cloud Services for the Internet of Things

uplinks, this becomes infeasible already for small networks. Contrarily, D-CAM only
sends one message per control operation from a gateway to the cloud, irrespective of
the network size. Thus, D-CAM’s scalability is not bound by bandwidth. Further-
more, D-CAM’s design reduces setup and management costs and is less susceptible
to misconfiguration.

To quantitatively compare D-CAM to VPNs and SSH, we perform additional mea-
surements using our evaluation setup. To this end, we use OpenVPN 2.3.4 (for
comparison with VPNs) as well as OpenSSH 6.7 (for comparison with SSH) both
with RSA 2048 bit keys and AES-256 in CBC mode for encryption. These parameter
choices provide the same security level as D-CAM. For a gateway group size of N , the
transmission of a message of size 2500 byte results in 2925×N byte application layer
payload for OpenVPN and 2766×N byte application layer payload for OpenSSH.
This stands in stark contrast to an application layer payload of 2826 byte irrespec-
tive of the gateway group size for the transmission of a message of size 2500 byte
when using D-CAM.

Hence, already for federated IoT networks of 3 gateways, D-CAM reduces the com-
munication overhead compared to utilizing VPNs or SSH. We observe similar trends
for the processing time required for creating and verifying control messages (for a
signing respectively verification interval of 20 in D-CAM).

5.3.4.4 Concluding Observations

We specifically designed D-CAM to scale to large federated networks. Our evaluation
results confirm that the processing time for appending to the message log as well
as the processing time for verifying individual messages in D-CAM’s message log
are not noticeably impacted by the size of the gateway group, i.e., the number of
gateways participating in a federated IoT network. Likewise, neither storage nor
communication overhead of D-CAM depend on the gateway group size. D-CAM
scales linearly in the size of the message log, being bound only by the amount of
available storage space.

Our message log trimming approach further helps in reducing the required stor-
age space and the verification time for gateways joining an already established IoT
network. Additionally, D-CAM does not constitute a trade-off between security
and performance. We provide the same level of security as digital signatures and
additionally protect against modification, insertion, reordering, and withholding of
control messages.

Increasing D-CAM’s signing and verification intervals allows us to reduce the pro-
cessing overhead when creating respectively processing individual control messages.
The trade-off here is that messages must be buffered at a receiving gateway before
they can be verified. Furthermore, in the unlikely event of signature mismatches,
D-CAM might have to drop more control messages than actually necessary.

To conclude, D-CAM provides a high level of security against powerful adversaries
such as a malicious-but-cautious cloud provider at reasonable costs with respect to
processing and storage overhead.

5.3. D-CAM: Distributed Control in the Cloud-based Internet of Things 193

5.3.5 Achieving Message Confidentiality

So far, we have concentrated on achieving integrity and authenticity in D-CAM.
However, certain scenarios also require the confidentiality of control messages to
achieve privacy as the information on the configuration, authorization, and manage-
ment of IoT devices and networks may in itself contain private information.

For example, such control messages could reveal that a company operates specific
equipment and its precise configuration, thus providing competitors with a strategic
advantage. In the private setting, control messages show which medical sensors
a user operates, thus hinting at certain medical conditions. To preserve users’ and
corporations’ privacy when using the cloud to control and federate their IoT network,
we thus encrypt all control messages in D-CAM to only allow authorized gateways
within the federated IoT network to access their content. Similar to the trust point-
based security architecture underlying SCSlib (cf. Section 5.2), we efficiently encrypt
control messages using a symmetric group key (e.g., using AES-256) that is shared
among the members of a gateway group.

However, users can add or remove gateways arbitrarily. This flexibility renders the
distribution of the group key challenging, as a gateway must only be able to read
control messages in the message log that were appended during the time span of the
gateway’s membership in the corresponding gateway group. To achieve this goal, we
change and redistribute the group key whenever changes to the group membership
occur, i.e., gateways are added or removed. Furthermore and similar to SCSlib, we
periodically exchange the group key to strengthen security (cf. Section 5.2.2.3).

For distributing the group key, we rely on the public keys of the gateways in the
gateway group as these are known to all other members of a gateway group by design.
Each time a gateway appends a control message to add or remove a gateway from
the gateway group, it also has to change the group key. To this end, the gateway
encrypts the group key for each gateway that (still) is a member of the gateway
group after the addition or removal operation by using the respective public keys.
To distribute these keys, the gateway that initiated the operation leading to the key
exchange then appends the encrypted group keys for each gateway to the message
log. Thus, only the current gateway group members can decrypt the new group key
and as a result the following messages in the message log. As gateways join or leave
a gateway group rather sporadically and periodic key exchanges happen in larger
time intervals, this introduces only a modest overhead (cf. Section 5.2.4) that is
worth the additional protection of the confidentiality of control messages and hence
users’ privacy with respect to the configuration, authorization, and management of
their IoT devices and networks.

5.3.6 Summary and Future Work

When steering the configuration, authorization, and management of federated IoT
networks from the cloud, severe privacy, security, and safety concerns arise. To
overcome these concerns, we presented D-CAM to realize distributed configuration,

194 5. Privacy-preserving Cloud Services for the Internet of Things

authorization, and management in the cloud-based IoT across network borders.
D-CAM runs directly on the user-controlled gateways in a federated IoT network
and allows users to control their complete federated IoT network from each of their
gateways without having to care about the reachability and availability of individ-
ual devices. To this end, D-CAM utilizes the concepts of hash chains and digital
signatures to create a secure and distributed administrated log of control messages
stored in the cloud. We deliberately restrict the cloud to act as a highly available
and scalable proxy for relaying and storing secured control messages. This allows us
to ensure the integrity, authenticity, and confidentiality of control messages, even in
the presence of a powerful attacker such as a malicious-but-cautious cloud provider.
D-CAM’s tamper-resistant log of all control operations additionally allows to detect
and pinpoint internal attackers. Thus and in contrast to related work, D-CAM is
especially well-suited for controlling access to actuating capabilities of safety-critical
devices as they are prevalent in today’s IoT deployments.
As our evaluation results show, D-CAM’s high level of security, especially against
powerful adversaries such as a malicious-but-cautious cloud provider comes at mod-
est costs. Even on a resource-constrained gateway (such as a Raspberry Pi), D-CAM
is able to process more than 640 messages per second for a reasonable choice of sys-
tem parameters. Notably, D-CAM’s processing overhead depends only on the num-
ber of control messages to be processed and does not per se increase with the number
of gateways in the gateway group. Furthermore, D-CAM’s message log trimming
scheme results in at most a fixed storage overhead compared to a system realizing
configuration, authorization, and management centralized in the cloud without the
extra level of security provided by D-CAM. Compared to other remote manage-
ment approaches (e.g., VPNs and SSH), D-CAM does not only show comparable
performance for small networks but considerably scales better for larger networks.
We are convinced that the benefits of D-CAM can be valuable also beyond securing
configuration, authorization, and management in the cloud-based IoT. To this end,
promising future work would be concerned with deploying and adapting D-CAM for
other application domains. In the context of software-defined networking (SDN),
D-CAM could be evolved to handle the distribution of SDN rules, e.g., expressed
using OpenFlow [MAB+08], to bridge isolated individual networks over untrusted
communication infrastructure such as the Internet to create a federated SDN-enabled
network. In this setting, integrating the different architectural components of SDN
with their different roles and varying rights into D-CAM might prove challenging,
especially when multiple SDN controllers need to be synchronized in an extremely
timely fashion [TGG+12].
Indeed, further research is required to enhance D-CAM such that it is able to reach
the controller responsiveness requirements, e.g., a controller response time in the or-
der of 100 ms, as they are prevalent in SDN deployments today [TGG+12]. Likewise,
D-CAM could be applied to ease the configuration, authorization, and management
of devices in community networks [BBB+13]. A community network is a distributed
and decentralized system that typically operates at comparable large scales to de-
liver a wide range of applications and services, most importantly Internet access
[BBB+13]. Examples include the Freifunk movement in Germany or the Guifi.net
network in Spain. As community networks constitute a less trustworthy environment

5.4. Conclusion 195

than the federation of the IoT networks of one user, D-CAM needs to be enhanced
with consensus protocols comparable to Bitcoin’s proof-of-work [Nak08,CD16] to be
applicable in this scenario.

Finally, by coupling D-CAM even tighter with the concept of blockchains and es-
pecially smart contracts, we could realize deployment scenarios where access to
IoT devices or the data they produce is automatically granted to anyone who
pays a certain user-defined fee, e.g., using a micropayment scheme, or is depen-
dent upon sufficient anonymization schemes such as k-anonymity or differential pri-
vacy [MMZ+17,SBHD17]. Here, the main challenge lies in technically ensuring that
access to IoT devices and their data is indeed only granted if the user-imposed
conditions for this access have been met.

In conclusion, D-CAM allows users to securely realize distributed configuration, au-
thorization, and management in cloud-connected IoT networks even in the presence
of powerful attackers at modest costs in terms of processing and storage overhead.
By doing so, we enable users to conveniently and reliably interconnect their previ-
ously isolated IoT networks without raising privacy, security, and safety concerns
that otherwise would prevent the federation of IoT networks based on the cloud as
a highly available and scalable underlying infrastructure.

5.4 Conclusion

While cloud computing is a promising solution for handling the growing demand
for storing and processing large amounts of data collected by an increasing number
of IoT deployments, integrating the IoT with cloud computing raises severe pri-
vacy concerns (cf. Section 2.4.2). When realizing cloud services for the IoT, the
providers of these services are in a diametral position as they do not control the un-
derlying cloud infrastructure but still have to account for the privacy of their users.
To support cloud service providers in developing and deploying cloud services in a
privacy-preserving manner, we proposed two approaches, (i) to transparently realize
the protection of IoT data stored in the cloud and (ii) to secure the configuration,
authorization, and management of IoT devices and networks in the cloud.

To unburden service developers from having to implement the necessary security
functionality and hence enable domain specialists who are not security experts to
realize privacy-preserving cloud services, we introduced SCSlib, a security library
that transparently handles the security functionality required for accessing protected
IoT data in the cloud. SCSlib is based on our trust point-based security architecture
for IoT data in the cloud [HHCW12, HHM+13, HHMW14] that essentially realizes
a user-centric and cryptographically enforced access control system. To this end,
SCSlib relies on a widely applicable, standards-based approach to represent and
protect IoT data in the cloud and, as a result, can support different performance
and security requirements. Our evaluation performed on public cloud infrastructure
confirmed the feasibility of abstracting from processing protected IoT data in cloud
services. Notably, SCSlib’s caching scheme clearly improves processing times for
sequential and random access to IoT data in the cloud.

196 5. Privacy-preserving Cloud Services for the Internet of Things

Moving onwards from solely protecting the access to IoT data, we presented D-CAM,
a distributed architecture that enables users to additionally secure the configuration,
authorization, and management of their IoT devices and networks across network
borders. To this end, D-CAM effectively ensures that only authorized parties can is-
sue and access configuration commands. Notably, D-CAM limits the cloud to act as
a highly available and scalable storage for control messages and thus realizes reliable
and secure network control across IoT networks. D-CAM provides strong security
guarantees such that even a dishonest cloud provider cannot control IoT devices
without permission of the owner of these devices. In our evaluation of D-CAM, we
have seen that the introduced processing, storage, and communication overheads are
reasonable and worth the additional level of protection. Furthermore, our evaluation
results indicate that D-CAM can easily scale to secure large federated IoT networks.
To also protect private information potentially contained in configuration, autho-
rization, and management messages, D-CAM additionally supports a mechanism to
protect the confidentiality of these messages.

In this chapter, we mainly addressed the research question on how service providers
can build privacy-preserving cloud services on top of cloud infrastructure. Conse-
quently, our contributions in this chapter primarily tackle the core problem of users’
missing control. We tackle this problem by cryptographically protecting the access
to IoT data as well as the configuration of IoT devices and networks. Through
these efforts, we additionally provide users with transparency over who has access
to their data and who can control their IoT devices and networks. Furthermore, by
unifying interfaces and hence realizing interoperability with different cloud services,
our contributions pave the way towards breaking up the inherently centralized cloud
computing landscape.

The results presented in this chapter highlight the importance of addressing the
role of cloud service providers and developers to protect users’ privacy when using
cloud-based services. By integrating our contributions presented in this chapter
with data handling requirements-aware cloud infrastructure as proposed in Chapter
4, we can further increase the level of privacy offered to users, e.g., by allowing
them to specify requirements such as the security level of SCSlib’s cryptographic
primitives. Furthermore, the concepts underlying SCSlib and D-CAM can serve as
an important foundation for realizing cloud services in a fully decentralized peer-
to-peer system of trusted resources as presented in the subsequent chapter. Here,
SCSlib can be adapted to afford confidentiality of data at rest and during transport.
Likewise, D-CAM could be applied to secure the management of resources in such
a decentralized setting.

6
Decentralizing Individual Cloud
Services

So far, we focused on approaches where different actors in the cloud computing
landscape cooperate to provide privacy. This cooperation, however, requires users
to put a certain level of trust into infrastructure and service providers which might
not always be justified. In this chapter, we explore how a decentralized deployment
model for a certain class of cloud services which do not require massive scalability
can enable users to completely refrain from using cloud services by cooperating with
other users. To this end, we first motivate our idea of decentralizing individual cloud
services (Section 6.1). We then present PriverCloud [Hil14,HHHW16], a secure peer-
to-peer cloud platform based on social trust. PriverCloud builds on top of devices
operated by users’ close friends and family to realize a trusted, secure, and decen-
tralized execution environment for individual cloud services (Section 6.2). Finally,
we conclude this chapter with a discussion and summary of our results (Section 6.3).

6.1 Motivation

One of the fundamental challenges with respect to privacy in cloud computing is
the centrality of the cloud computing market (cf. Section 1.1.3). This centralization
is inherent to the current deployment model of cloud services, where cloud services
are realized on top of cloud infrastructure operated by a small number of providers
that jointly dominate the market (cf. Section 1.1.3). Some of these challenges result
from the key characteristics of cloud computing (cf. Section 2.1.1), e.g., infrastruc-
ture providers have to rely on a large amount of computing and storage resources
which require huge upfront investments to provide rapid elasticity as well as failover
and resilience. Thus, the cloud computing landscape naturally evolves around a
comparably small number of players.

198 6. Decentralizing Individual Cloud Services

Yet, we observe that not all types of cloud services necessarily require the massive
scalability promised by cloud computing. This includes individual services, i.e., cloud
services where users interact only with their own data, such as calendar and contact
synchronization, which often do not require the full massive scalability offered by
cloud services. Hence, for this class of cloud services, it would be sufficient to deliver
the remaining advantages of the cloud computing paradigm such as availability and
reliability. As a result, we could break up the centrality of cloud computing and
empower users with exceptionally strong privacy expectations and mistrust into
cloud providers to completely refrain from using cloud services and still benefit from
selected advantages realized by the cloud computing paradigm.

State-of-the-art approaches to overcome the centrality of public cloud services can be
classified into two categories. First, approaches that shift cloud services to devices
controlled by an individual user such as ownCloud [Own18] or Seafile [Sea18] typi-
cally trade-in availability and scalability for increased privacy. This is mainly due
to the use of only a single or very few devices, often hosted at the user’s home and
connected only via one residential access line to the Internet. Second, when solely
considering the confidential storage of data in the cloud, the centrality of cloud com-
puting can partly be countered using encryption [Box18] or splitting of data between
different cloud providers [BKTM11, JZV+12]. However, in such a setting, data is
merely stored in the cloud. Decryption and any processing have to happen on the
users’ devices without the possibility to benefit from the scalable resources of the
cloud. Still, even in this restricted scenario, the cloud provider can derive valuable
meta information, e.g., time and location of data access. Hence, state-of-the-art
approaches (partly) break up the centrality of cloud computing and put users back
in control over their data at the cost of diminishing the benefits of cloud computing
to a large extent. Thus, the question of how we can realize individual cloud ser-
vices in a decentralized manner without having to give up the advantages of cloud
computing is an open and pressing challenge.

6.1.1 Contributions

To address the challenge of overcoming the centrality of cloud computing, we propose
to decentralize individual cloud services to allow users to protect their privacy and
still benefit from the advantages of cloud computing. More specifically, in this chap-
ter, we present PriverCloud, a secure peer-to-peer cloud platform that utilizes idle
resources of devices of friends and family to realize a trusted, decentralized system
in which cloud services can be operated securely and privacy-preserving. Notably,
our approach solely relies on cooperation between users and hence eliminates any
trust assumptions for service or infrastructure providers. Furthermore, to alleviate
trust assumptions between different users, PriverCloud optionally supports the use
of trusted platform modules (TPMs) to technically guarantee the privacy of user
data. To ease the migration from public cloud services, PriverCloud affords for the
execution of existing cloud services developed for Google App Engine [Goo18a]. As
our evaluation shows, PriverCloud achieves high availability by securely distributing
data storage over trustworthy devices as well as by monitoring the reachability of
cloud services and automatically recovering from any detected failures.

6.2. PriverCloud: A Secure Peer-to-Peer Cloud Platform 199

6.2 PriverCloud: A Secure Peer-to-Peer Cloud Plat-
form

Despite the privacy challenges resulting from cloud computing, cloud services pro-
vide very desirable features that cannot be neglected. Specifically, they offer high
availability, easy accessibility, extreme scalability, and simple deployment. Most no-
tably, cloud services provide a high ease of use due to their integration into many
devices and applications, e.g., smartphones and web browsers. Still, besides all
our efforts for cooperative approaches to privacy in cloud computing (cf. Chapters 3
to 5), the privacy expectations and mistrust into cloud providers of some users might
be so strong that they decide not to use any cloud services at all. In this setting,
the question of how we can provide these users with (a subset of) the advantages of
cloud computing—at least for certain types of cloud services—naturally arises.

Hence, to realize privacy-sensitive cloud services and keep the advantages of cloud
computing, we propose an architecture called PriverCloud. We motivate our ap-
proach based on two core observations: (i) moving away from the centrality of
cloud computing is key to account for exceptionally strong privacy requirements
and (ii) users posses unused processing resources in their home networks (e.g., home
routers or network attached storage and set-top boxes) that become increasingly
more powerful (e.g., modern home routers have multiple CPU cores and 1 GB of
RAM). Hence, we advocate for moving privacy-sensitive services from public clouds
to an individual PriverCloud for each user which consists solely of trusted infrastruc-
ture contributed by close friends and family. This approach allows us to break up
the inherent centrality of cloud computing but still leverage decentralized resources
to realize most of its prominent features.

To turn this vision into an actually deployable technical system, we identify the
following challenges: (i) coping with the inherent resource constraints with respect to
processing, storage, and networking of devices typically available in home networks,
(ii) achieving the advantages of cloud computing in a highly decentralized system
built on heterogeneous devices, (iii) extending trust from individual device owners to
a whole PriverCloud deployment, and (iv) achieving deployability, most importantly
by easing the migration from public cloud services to a PriverCloud deployment.

In the following, we discuss how to solve these technical challenges for PriverCloud
deployments spanning over resource-constrained devices in home networks. We sub-
stantiate the feasibility of our proposed approach by evaluating the performance
of our implementation of PriverCloud. Our results show that PriverCloud can be
deployed to devices with constrained resources with modest overhead introduced by
our security measures. Furthermore, PriverCloud reliably detects and recovers from
failures of devices in the order of seconds.

6.2.1 Problem Analysis and Trust Model

The motivation of users to refrain from using cloud services mainly results from
the inherent centrality of cloud computing and the resulting loss of control of users

200 6. Decentralizing Individual Cloud Services

Figure 6.1 In our envisioned scenario, each user builds her individual PriverCloud instance over
trusted devices contributed by friends and family. A user can use processing () and storage ()
resources on these devices to realize Internet-accessible privacy-sensitive cloud services.

over their data. This loss of control is mainly due to three threats. First, the
cloud provider (or one of its employees) might be interested in the data and ac-
cess it without authorization [PCB15]. Second, certain countries access and inter-
cept data within their legislation for safety, security, economic, or scientific pur-
poses [Gel13,PP15]. Finally, it is common for cloud service providers to subcontract
other cloud providers [PP15], e.g., to mitigate load peaks, as demonstrated to the
user by our awareness approaches (cf. Chapter 3). Hence, the previous two threats
amplify significantly, as the user does not only have to trust one cloud provider (and
the responsible jurisdiction) but a potentially unknown number of additional cloud
providers and the jurisdictions they operate in (cf. Section 1.1.3).

To overcome these severe threats to privacy, it is thus inevitable to break up their
two root causes: centrality and loss of control. We do so by introducing our Priver-
Cloud architecture with individual instances that run only on devices a specific user
explicitly trusts and are deployed in a location with acceptable legislation. Thus, our
approach allows for a new calibration of the trade-off between privacy and advan-
tages of cloud computing such as availability and accessibility. This stands in stark
contrast to today’s approaches for strictly preserving privacy for cloud services which
come at the cost of diminishing many benefits of the cloud computing paradigm. In
the following, we first discuss our underlying scenario and trust assumptions. From
this scenario, we derive the challenges that any approach to decentralizing individual
cloud services needs to address before we discuss and analyze related work.

6.2.1.1 Scenario

We present our envisioned scenario in Figure 6.1 by exemplarily focusing on the
viewpoint of the user Alice and her PriverCloud instance. Before Alice can start
using PriverCloud, she first has to gain access to infrastructure that she trusts and
that can provide her with the required processing and storage resources. For this
purpose, we envision to leverage the idle resources on devices of close friends and
family. These devices range from less powerful, embedded devices (e.g., Raspberry
Pis or NAS and set-top boxes) to more powerful devices such as desktop computers.
Typically, these devices are located within home networks and connected to the In-
ternet using residential access lines and as such suffer from connectivity disruptions.

6.2. PriverCloud: A Secure Peer-to-Peer Cloud Platform 201

Once Alice has built-up her PriverCloud instance, she can begin to run cloud services
on it. We specifically target cloud services that are especially susceptible to privacy
threats. Here, our focus lies on individual cloud services, i.e., services targeting
a small closed target audience (e.g., only Alice herself or selected friends). These
applications can range from a calendar service offering synchronization, scheduling,
and notifications up to a fully-fledged document storage service able to store several
GBs of data and offering functionality such as file sharing, image editing, or multi-
media streaming. In contrast, cloud services which can be accessed by anyone are
in our opinion better off with public cloud services as their information is publicly
available anyways. To operate a cloud service, Alice selects a service from a service
marketplace, similar to those available for smartphones (of course, Alice can also
develop her own custom cloud service). The cloud service is then deployed on one
or multiple of the devices in Alice’s PriverCloud instance. Should the cloud service
require persistent storage of data, this data is distributed to the available storage
provided by these devices.

As with public cloud services, Alice should be able to access her services indepen-
dent of her location via the Internet at any time. She should neither have to care
about the actual device a specific service is running on nor which device stores her
data. Notably, no modifications should be required on the client side to allow Alice
to continue to use her web browser or other applications (e.g., an app on her smart-
phone) to access the services deployed in her PriverCloud instance as with today’s
cloud services. In our approach, each user has her own PriverCloud instance span-
ning over resources she trusts, e.g., provided by friends and family. However, as we
utilize resources based on social relationships, the PriverCloud instances of different
users are likely to overlap (gray/black device in Figure 6.1). In this example, Alice
and Bob trust the same device and hence can both utilize its resources. Importantly,
this does not imply that Alice and Bob have to trust each other. In the following,
we discuss the trust assumptions in our scenario in more detail.

6.2.1.2 Trust Assumptions

In traditional cloud deployments, we differentiate between different actors that pro-
vide the necessary processing and storage infrastructure, offer services on top of
this infrastructure, and consume these services (cf. Section 2.1.3). Contrary, in our
envisioned scenario underlying PriverCloud, all these tasks have to be performed by
the participants of the peer-to-peer system themselves. To ease presentation in the
following, we refer to participants who make their storage and processing resources
available to other participants as resource providers and denote those participants
that consume resources to operate their services as users. Typically, participants in
PriverCloud will take both roles, i.e., act as a resource provider for other users and
at the same time use resources offered by other resource providers.

As a foundation for our design of PriverCloud, we first discuss our trust assumptions
for the underlying scenario as illustrated in Figure 6.2. Most importantly, we assume
a scenario that leverages social trust, i.e., that users trust resource providers. Conse-
quently, it is safe to assume that resource providers in general refrain from accessing

202 6. Decentralizing Individual Cloud Services

Figure 6.2 Our underlying scenario considers different levels of trust between the different
users, resource providers, and optional public cloud storage involved with PriverCloud.

potentially sensitive data of other users or tamper with services deployed by users
on their resources. In Section 6.2.2.3, we additionally provide technical measures
based on TPMs that further strengthen users’ trust into resource providers.

As shown in Figure 6.2, resource providers typically offer their resources to more
than one user. Here, our assumption is that these users do not necessarily trust each
other. This is a reasonable assumption since often users do not even know which
other users rely on the same resource provider. Furthermore, resource providers
might themselves use cloud services to increase their available storage space and
hence also use this additional cloud storage to provide resources to other users.
Naturally, users do not trust the providers of these cloud services.

When considering the role of resource providers, we assume that resource providers
partially trust the users of their resources. More specifically, resource providers
need to trust users to behave responsibly with respect to the provided resources,
e.g., only requesting the amount of resources they actually need and not wasting
resources. When resource providers leverage cloud services to increase their storage
space, they trust the providers of these cloud services to honestly store the data.
However, resource providers do not trust providers of cloud services to respect the
confidentiality of outsourced data. Finally, neither users nor resource providers trust
any entities on the network path to other participants of a PriverCloud instance.
Most notably, these entities include networks operators and ISPs.

6.2.1.3 Challenges

Based on our envisioned scenario and the above trust assumptions, we identify the
following four main challenges any approach to decentralizing individual cloud ser-
vices needs to address.

Respecting Resource Constraints: As we target devices in home networks, we
have to cope with limited storage and processing resources as well as limiting net-
work conditions. Additionally, as we envision to utilize a wide range of different
devices, we have to account for heterogeneity of resources. When considering stor-
age resources, a home router might provide up to few GB of storage space, while a
NAS box can supply up to a few TB of disk space. Since these resources need to be

6.2. PriverCloud: A Secure Peer-to-Peer Cloud Platform 203

shared with other users, restrictions and quotas apply (e.g., 100 MB of storage per
user VM in the Seattle testbed [CBKA09]). A similar situation applies to processing
resources. Cloud services, formerly executed on powerful server CPUs provided by
public cloud infrastructures, have to be operated on comparatively limited CPUs
provided by desktop PCs or even embedded devices. Furthermore, when decen-
tralizing individual cloud services, we face network conditions of residential access
links which provide limited availability and capacity. Specifically, devices connected
via residential access lines might not be always connected to the Internet and the
available bandwidths are typically orders of magnitude smaller than those of data
centers. Further complicating this issue is the asymmetry in bandwidth home net-
works often suffer from, i.e., a higher ratio of downlink than uplink. Especially the
limited uplink makes the operation of bandwidth-hungry services challenging.
Preserving Cloud Advantages: Preserving advantages of cloud computing when
decentralizing individual cloud services is a challenging task. Specifically, from a
usability perspective, a user should not even notice that she is not using traditional
cloud services (although the usage of decentralized individual cloud services should
be evident for transparency purposes). First of all, the availability of data and ser-
vices in public clouds has to be achieved using decentralized devices with residential
access links as sole connection to the Internet. Although the distributed nature of
our envisioned deployment scenario makes this challenging, it also opens up new op-
portunities. In contrast to public clouds, decentralized individual cloud services are
not susceptible to outages of complete data centers [KKLL09]. Similar to availabil-
ity, the accessibility of data and services should not be harmed compared to public
clouds. Most importantly, decentralized individual cloud services should be acces-
sible from any device and anywhere, just as public cloud services. Hence, clients
(e.g., smartphone apps or web browsers) should not need to implement application
logic or decryption operations. Additionally, users should be able to transparently
access their services without having to care about on which resources these are cur-
rently deployed. From another perspective, decentralized individual cloud services
should provide scalability with respect to a service’s varying processing and storage
demands at least to a certain extent (as required by individual services).
Extending Trust: Our envisioned scenario for decentralizing individual cloud ser-
vices builds on social trust. However, we have to provide measures to extend this
initial trust in individual persons to the whole system. First of all, decentralized
individual cloud services span over the untrustworthy Internet (cf. Figure 6.1) and
hence are susceptible to several attack vectors. Secondly, not only do users have
to trust the devices their services run on, but also the resource providers need to
trust users to not abuse the resources of their devices. Thirdly, we have to account
for multi-tenancy in resource usage. More specifically, two users that do not nec-
essarily trust each other might end up utilizing resources on the same device (cf.
Section 6.2.1.2). Finally, no untrusted entity should have access to private informa-
tion, which includes meta information such as file names or access patterns.
Achieving Deployability: With our scenario of decentralized individual cloud ser-
vices, we aim for a drop-in replacement of today’s public cloud services. Hence,
deployability of decentralized individual cloud services becomes an important chal-
lenge to facilitate the seamless migration from public clouds. Most importantly, a

204 6. Decentralizing Individual Cloud Services

sufficient amount of different cloud services has to be available to replace today’s
public cloud services. Furthermore, we have to provide a simple deployment of ser-
vices. As for public clouds, users need to be able to deploy decentralized individual
cloud services themselves, without requiring interaction with other parties.

6.2.1.4 Related Work

One prominent stream of related work targets the delivery of cloud-like resources
in a peer-to-peer manner, similar to the vision underlying our approach. As a first
approach, P2PCS [BMT12] targets the peer-to-peer delivery of cloud infrastructure
resources from a large, unreliable, and uncoordinated pool of devices. Likewise,
Mayer et al. [MKH+13] propose an autonomic cloud system in which PaaS resources
(cf. Section 2.1.2.1) are voluntarily provided by heterogeneous devices using a peer-
to-peer system. Khan et al. [KNSV13] as well as Baig et al. [BFN16, BFN18] pro-
pose to extend community networks (cf. Section 5.3.6) to provide cloud resources in
a peer-to-peer manner, e.g., to deploy tailored services at the edge of the network.
These approaches have in common that they strive to offer publicly accessible com-
puting resources in a distributed manner. They do not, however, explicitly address
resulting privacy challenges, e.g., by ensuring that services are operated only on
trustworthy infrastructure.

In contrast to these generic approaches, Cutillo and Lioy [CL13a,CL13b], similar to
our motivation, specifically target the goal of preserving privacy by deploying cloud
resources using a peer-to-peer overlay based on social trust. In their approach, users’
cloud services can also be deployed to untrusted resources and, hence, the main ob-
jective of their approach is to leverage social trust to hide users’ participation and
interaction with cloud services. Our objective is different. We strive to solve the
technical challenges of realizing decentralized individual cloud services over resource
constrained devices in home networks in a secure manner. Still, the work of Cutillo
and Lioy could enhance our approach by additionally providing anonymity for re-
source usages, i.e., by ensuring that resource providers do not learn who interacts
with which cloud services.

To break up the inherent centrality of cloud computing, another stream of re-
lated work proposes to split up the storage of data over different cloud providers.
RAIN [JZV+12] aims at splitting data into very small segments which are distributed
among a multitude of storage providers. In contrast, MetaStorage [BKTM11] allows
users to distribute data on a per-file basis over several existing cloud offers and
has been extended to preserve compliance with privacy requirements [WMF13].
Likewise, CloudFilter [PP12] introduces a transparent proxy between users and
their storage providers to automatically split data between different cloud storage
providers based on users privacy requirements. Following a similar approach, Nu-
biSave [SMS13] combines resources from multiple cloud storage providers to realize
user-specific redundancy and security requirements. Yeo et al. [YPLL14] specifically
target the use of multiple cloud storage providers on resource-constrained mobile
devices. While these approaches still target traditional cloud infrastructures, Friend-
Box [GSMG12] builds up a storage cloud over resources contributed by friends. This

6.2. PriverCloud: A Secure Peer-to-Peer Cloud Platform 205

approach, however, trades in most of the advantages of cloud computing to achieve
privacy. Specifically and in contrast to our work, users cannot benefit from scalabil-
ity and accessibility, as the client used to access data has to realize any application
logic and decryption or reassembling of data.

From a different motivation than ours, several approaches aim to utilize idle re-
sources of home network devices to provide cloud-like services. For example, Seat-
tle [CBKA09], a community cloud (cf. Section 2.1.2.2) built over commodity devices,
aims at providing a learning platform. Caton et al. [CHC+14] extract trust levels
from social networks to extend Seattle with trust-based resource allocation. Cute-
Cloud [CZFK12] employs virtual machines to manage idle resources in a community
cloud. CWC [ASS+12] strives to build a cloud over processing resources of charg-
ing smartphones. Similarly, ParaDrop [WDB14] aims at realizing edge computing
by offloading processing tasks from the cloud back to home gateways. From a dif-
ferent perspective, different approaches propose to utilize idle resources of set-top
boxes [JNC12] or mobile devices such as smartphones [ESM09, DKG+10] to build
MapReduce clusters. Although these approaches, in contrast to our work, do not
aim at preserving privacy when using arbitrary cloud services, they provide valuable
input for addressing parts of our challenges, especially with respect to realizing cloud
characteristics on resource-constrained devices.

With the goal to safeguard access to personal data, several approaches from related
work [CCH+15, MGM+10, MSWP14] propose to create personal containers or data
boxes. The core idea of these approaches is to store all personal data of a user in a
secure location and selectively make this data available for specific purposes. Decen-
tralizing individual cloud services, as proposed in our work, could provide a solid and
secure foundation for realizing such approaches. From a different perspective, Sealed
Cloud [JMR+14] employs TPMs to prevent insider attacks in traditional, data cen-
ter clouds, where different security assumptions have to be considered. Still, their
insights can partly be applied to our work where we use TPMs to further strengthen
users’ trust into resource providers.

Finally, from a more technical perspective, we have to consider approaches that ei-
ther allow users to set up their own cloud environment or encrypt all data before
it is sent to traditional cloud services. When shifting cloud services from tradi-
tional cloud infrastructure to devices controlled by the individual users (e.g., using
ownCloud [Own18] or Seafile [Sea18]), often only one or very few devices are avail-
able to execute these cloud services on, which severely jeopardizes availability and
scalability. This issue further exacerbates for private “clouds” hosted at the users’
homes as home networks are typically connected via a single residential access line
to the Internet and thus constitute a single point of failure. Similarly, when still
utilizing public cloud services but encrypting data prior to upload (e.g., using Box-
cryptor [Box18]), the inability of clouds to efficiently process encrypted data requires
application logic and decryption on the client when accessing data. This diminishes
many advantages of the cloud with respect to processing and accessibility. Addi-
tionally, cloud providers can still obtain valuable meta information, e.g., time and
location of data access. Hence, current approaches put the user in the dilemma of
having to choose between either her privacy or the advantages of cloud computing.

206 6. Decentralizing Individual Cloud Services

6.2.2 Decentralizing Individual Cloud Services with PriverCloud

To overcome users’ dilemma of having to choose between preserving their privacy
and benefiting from the advantages of cloud computing, we propose to decentral-
ize individual cloud services. More specifically, we propose to create an individual
PriverCloud instance for each user which is built upon trusted resources contributed
by close friends and family. While this approach certainly is not suited for all kinds
of cloud applications, it offers the user an additional choice for certain applications
which target a small user group and have strong requirements for privacy, especially
in fear of privacy threats originating from the tracking and surveillance by corpora-
tions and governments. In the following, we show how our decentralized architecture
can be realized in a technical system and utilized to improve users’ privacy.

When decentralizing individual cloud services with PriverCloud, we have to perform
three core operations (cf. Section 6.2.1.1): (i) building-up an individual PriverCloud
instance, i.e., acquiring the necessary resources as well as selecting and deploying
cloud services, (ii) operating an individual PriverCloud instance, i.e., realizing the
advantages of cloud computing in a peer-to-peer system over constrained resources,
and (iii) securing operations within a PriverCloud instance, i.e., securing commu-
nication and authentication, separating cloud services, and extending social trust
through technical measures.

In the following, we discuss how we realize these three core operations of PriverCloud
and address the underlying challenges of respecting resource constraints, preserving
cloud advantages, extending trust, and achieving deployability (cf. Section 6.2.1.3).
Thereby, we arrange our presentation according to the typical usage pattern of our
exemplary user Alice (cf. Section 6.2.1.1).

6.2.2.1 Building-up a PriverCloud

Before Alice can start to use cloud services in her PriverCloud instance, she first has
to acquire the necessary storage and processing resources as well as to select and
deploy services on top of these resources.

Acquiring Decentralized Resources

Initially, Alice has to acquire the storage and processing resources which are re-
quired to build her individual PriverCloud instance. To amplify privacy in contrast
to public clouds, she must trust the resource providers to respect her privacy. In
the context of our proposed PriverCloud architecture, we derive this required trust
from existing social trust (e.g., close friends or family). More specifically, we pro-
pose to utilize idle processing and storage resources on devices ranging from less
powerful, embedded devices (e.g., Raspberry Pis or NAS and set-top boxes) to more
powerful devices such as off-the-shelf desktop computers owned and operated by
trusted persons such as family members and friends. As discussed in Section 6.2.1.2,
this underlying trust has to hold in both ways, i.e., resource providers also have to
trust Alice to not misuse their resources (e.g., by requesting excessive amounts of

6.2. PriverCloud: A Secure Peer-to-Peer Cloud Platform 207

resources). Notably, existing social trust not only provides a foundation for realizing
more privacy-friendly services but also provides incentives for contributing resources
[GSMG12], as resource providers can trust Alice to also provide them access to her
resources in a tit-for-tat manner (we further deepen this discussion in Section 6.2.4).

To build up Alice’s PriverCloud instance over the storage and processing resources
provided by her family and friends, we employ the concept of peer-to-peer comput-
ing. More specifically, each PriverCloud instance, i.e., exactly those resources that
are available to one user to deploy her services and data on, constitutes one peer-to-
peer network in which exactly those devices the user specifically selected participate.
Consequently, as resource providers typically provide access to their devices to more
than one user, devices can participate in more than one PriverCloud instance. We
deepen our discussion on how we protect access to a PriverCloud instance, i.e., peer-
to-peer network, of one user and how we separate services of different, potentially
mistrusting, users running on the same device in Section 6.2.2.3.

Acquiring Cloud Services

After Alice has acquired the necessary processing and storage resources to build up
her PriverCloud instance, she has to acquire cloud services that she can deploy on
top of these resources. To achieve a seamless migration from today’s public cloud
offers to Alice’s PriverCloud instance, we provide support for running existing cloud
services developed for the AppScale platform [App18b], an open source implemen-
tation of the widely-used Google App Engine framework [Goo18a]. A wide range of
cloud services that base on AppScale and/or Google App Engine is readily available
today. Additionally, many developers are familiar with the employed programming
model, which facilitates a steady development of new services. PriverCloud mimics
the socket and storage APIs of AppScale and even introduces additional function-
ality, e.g., a transparent transport security mechanisms. Existing AppScale and
Google App Engine services can be run in PriverCloud with negligible modifications
to their source code (at most eight lines of additional boilerplate code).

To allow users to actually obtain services, we envision a service marketplace, similar
to those for mobile apps on smartphones, that lists all available PriverCloud services
and allows users to conveniently deploy a selected cloud service to their individual
PriverCloud instance. In this marketplace, each service provides a description of its
functionality and users can rate cloud services, which allows users to take a more
informed decision. Additionally, we require source code availability, such that the
functionality of a service can be audited by the operator of the marketplace or a
trusted third party.

Deploying Cloud Services

Once Alice has selected a cloud service from the PriverCloud service marketplace, she
has to deploy it in her PriverCloud instance. To this end, each PriverCloud instance
is initiated with a special PriverCloud service, the ControlCenter. The Control-
Center provides a web interface that allows users to manage their cloud services,

208 6. Decentralizing Individual Cloud Services

e.g., deploying new cloud services in their PriverCloud instance. When deploying
a new cloud service, the ControlCenter identifies the device of Alice’s PriverCloud
instance that fulfills the cloud service’s resource requirements best (based on the
current load) and deploys the cloud service on this device. Still, not every device of
Alice’s PriverCloud instance might be able to fulfill high resource demands of certain
cloud services, e.g., bandwidth-intensive cloud services may face network limitations
when deployed on the wrong device. To address this issue, we classify cloud services
and devices according to their resource demands and availability, respectively. This
enables the ControlCenter to place cloud services on devices that provide sufficient
resources, e.g., an application with high uplink demand will be deployed on a device
with sufficiently good Internet connectivity. By operating the ControlCenter within
a PriverCloud instance, PriverCloud does not require additional client software to
deploy cloud services and hence preserves one of the important advantages of cloud
computing (cf. Section 6.2.1.3). Likewise, all operations necessary to deploy cloud
services can be controlled from a web interface, similar to the marketplaces for mo-
bile apps on smartphones, without the need for technical expertise and hence easing
the migration from today’s public cloud offers (cf. Section 6.2.1.3).

6.2.2.2 Operating a PriverCloud

Stepping away from the perspective of individual users, we now primarily focus on
how to realize the advantages of cloud computing in the face of constrained resources
often prevalent in home networks (cf. Section 6.2.1.3) when executing services in a
PriverCloud instance. To this end, we provide measures for accessing cloud services,
achieving service and data reliability, amplifying data redundancy, and realizing
scalability. As for public cloud services, these technical measures are mostly hidden
from users but are important to justify trust into the underlying system. In the
following, we first describe how users interact with cloud services in the absence of
failures and then detail how PriverCloud achieves reliability and scalability.

Accessing Cloud Services

Users need to be able to access their cloud services (similar to those deployed in
public clouds), without having to know on which specific device they have been
deployed. To achieve this goal, we assign each cloud service a DNS hostname under
which this service can be accessed using Dynamic DNS. The ControlCenter updates
the corresponding Dynamic DNS entry whenever the cloud service is migrated to
another device or if the IP address of the device to which the cloud service was
deployed changes.

However, devices in home networks typically should run more than one cloud ser-
vice despite having only one public IP address. Hence, PriverCloud has to de-
multiplex incoming request to individual cloud services. As we specifically target
privacy-sensitive services and communication traverses the untrustworthy Internet
(cf. Section 6.2.1.1), it is reasonable to assume that all communication will be pro-
tected using transport layer security (TLS). Thus, we can utilize the server name

6.2. PriverCloud: A Secure Peer-to-Peer Cloud Platform 209

indication (SNI) extension of the TLS protocol [Eas11] for demultiplexing between
different cloud services. More specifically, modern clients such as web browsers and
smartphones will automatically include the DNS hostname of the cloud service they
want to contact in the initial handshake process. Since the hostname is transmitted
in plaintext (cf. Section 3.3.2.2), PriverCloud can use this information to demulti-
plex received requests to the correct individual cloud services without diminishing
security guarantees.

Service Reliability

Cloud services that are currently being executed in a PriverCloud instance may
abort at any time due to device or network failures. As in public clouds, such failures
must be handled transparently for the user, i.e., cloud services must automatically
recover from device or network failures without requiring user interaction. To this
end, we extend the ControlCenter that manages service deployment for each indi-
vidual PriverCloud instance (cf. Section 6.2.2.1) to also monitor the status of each
deployed cloud service using the TLS heartbeat extension [STW12]. More specifi-
cally, after starting a cloud service, the ControlCenter establishes a TLS connection
to this service and continuously sends heartbeat messages. When the ControlCenter
does not receive a heartbeat response within a specified timeframe (in our imple-
mentation five consecutive heartbeats), it assumes a service malfunction. A detected
malfunction of a cloud service then triggers a recovery of this service by deploying
it to another device in the user’s PriverCloud instance. In this process, a sensible
selection of the heartbeat frequency is crucial as it configures the trade-off between
detection delay and bandwidth consumed for monitoring. Additionally, a grace pe-
riod before initiating the recovery of a service can avoid unnecessary overhead in case
of temporary failures. Notably, also the ControlCenter can fail, hence, we operate
multiple instances that monitor each other. Here, only one of the ControlCenters is
actually used to deploy and monitor services, while the other ControlCenters only
act as a stand-in for the actually used ControlCenter.

Data Reliability

While the above approach allows us to restart cloud services in case of errors, this
does not hold for the data persistently stored by these services. To make service
recovery transparent for users, a service requires access to all previously stored data
after recovery. Hence, we decouple the storage location of data from the process-
ing location of services and provide redundant storage using a distributed hash
table (DHT) [WGR05] that spans across the devices within a PriverCloud instance.
This allows cloud services to store and later retrieve data independently from their
processing location and, hence, also after a recovery. We further increase reliability
by storing data on more than one device to create redundancy. Additionally, using a
DHT enables us to address the resource heterogeneity of devices (cf. Section 6.2.1.3):
We dynamically adjust the value range of the DHT for which a specific device is
responsible for and assign devices with a large amount of storage resources more

210 6. Decentralizing Individual Cloud Services

than one value range. As a result, we can balance the storage load of the devices in
a user’s PriverCloud instance according to the available resources.

Securing and Amplifying Data Redundancy

Achieving data reliability comes at the cost of additional storage space needed for cre-
ating the required storage redundancy. To offer another approach to create storage
redundancy and hence increase the reliability of stored data, we propose to utilize the
virtually infinite storage resources of public cloud storage services [BKTM11] with
the goal to extend the available storage space of a device with access to the cloud
storage account of the provider of this device. However, especially when using public
cloud storage, we have to guarantee data confidentiality and prevent unauthorized
modifications. Thus, we transparently apply encryption and integrity protection to
data before storing it in the DHT, similar to the object security mechanism applied
by SCSlib to protect IoT data when it is stored in the cloud (cf. Section 5.2.2), such
that only the user-controlled service can decrypt and thus access the data.

Nevertheless, we have to take care that untrusted parties, especially the providers
of utilized public cloud storage services, do not learn meta information such as time
and location of data access (cf. Section 6.2.1.3). Hence, instead of using Alice’s
public cloud storage account (e.g., Dropbox or Google Drive) for storing the data,
we extend the storage resources of devices by using the public cloud accounts of the
providers of these devices. With this approach, we can amplify the redundancy of
data storage and not only protect confidentiality and integrity of outsourced data
but also successfully hide the origin of data stored in public clouds.

Scalability

Finally, more advanced or frequently used cloud services may require more processing
resources than even powerful devices in a PriverCloud deployment can provide. In
this case, we follow the scale-out approach prevalent in cloud deployments today
and distribute one cloud service over multiple devices in a PriverCloud instance.
This deployment model becomes especially feasible if the processing load is induced
by user requests and hence request level parallelization can be employed to split a
cloud service into independent components that require only little synchronization.

In contrast, if a service requires operating on large amounts of data, we can employ
a paradigm similar to MapReduce [DG04] to perform operations on data as close
to its storage location as possible. With respect to increasing storage demands,
our DHT approach for providing reliable storage of data (see above) is inherently
scalable. Alice has to simply acquire more storage resources, e.g., by adding more
devices or additionally utilizing public cloud storage, if the need arises.

6.2.2.3 Securing a PriverCloud

Finally, to ensure user’s privacy in a PriverCloud instance, we have to ensure that
only trusted entities can participate in a PriverCloud instance and that data and

6.2. PriverCloud: A Secure Peer-to-Peer Cloud Platform 211

Figure 6.3 PriverCloud realizes secure end-to-end communication and authentication, sepa-
rates different cloud services executed on the same device, and extends social trust into resource
providers through technical measures.

communication are protected against unauthorized access. To this end, PriverCloud
enforces secure communication and authentication between the devices within a
PriverCloud instance as well as between users and their cloud services, separates
different cloud services that are executed on the same device, and augments the
social trust into resource providers (cf. Section 6.2.2.1) with technical measures. We
provide an overview of the security measures of PriverCloud and how they integrate
into our deployment scenario in Figure 6.3. All communication in PriverCloud takes
place over secure channels and is authenticated such that only authorized devices and
services can participate in a PriverCloud instance. Furthermore, all cloud services
are separated using secure execution environments to prevent interference between
cloud services of different users. Finally, a trusted operating system ensures that
resource providers do not exploit users’ trust and protects against security breaches
from outside entities. In the following, we discuss these operations in more detail.

Secure Communication and Authentication

Both, the communication between the different devices in Alice’s PriverCloud in-
stance as well as the communication of Alice with her cloud services traverse the
untrusted Internet and hence have to be protected. Besides integrity and confiden-
tiality, this includes the authentication of communication peers, e.g., to prevent that
untrusted and hence unauthorized devices join Alice’s PriverCloud instance.

To protect the confidentiality of communication in Alice’s PriverCloud as well as to
authenticate devices, cloud services, and users, we rely on mutually-authenticated
TLS channels for the communication between devices as well as between users and
cloud services. Alice relies on or operates a certificate authority to issue TLS cer-
tificates for the access to her PriverCloud instance. Specifically, Alice deploys TLS
certificates that grant access to her PriverCloud instance to all devices she trusts,
e.g., operated by family and close friends. Devices in the DHT underlying Alice’s
PriverCloud will only accept connections from other devices if these authenticate us-
ing a valid TLS certificate issued by the corresponding certificate authority. Hence,
only devices that are authorized (and hence trusted) by Alice can participate in her
PriverCloud instance. Likewise, the users of Alice’s cloud services will only establish

212 6. Decentralizing Individual Cloud Services

connections with those cloud services that provide a valid TLS certificate from the
respective certificate authority.

Finally, a special class of certificates is issued by Alice to her ControlCenters to
authenticate at devices in Alice’s PriverCloud instance, e.g., when deploying cloud
services on Alice’s behalf. At the same time, ControlCenters verify the identity of
devices before deploying cloud services based on the issued TLS certificates.

Efficient Separation of Cloud Services

Different cloud services, deployed in different PriverCloud instances and hence under
control of different users, can run on the same device in parallel (cf. Figure 6.1). To
ensure Alice’s privacy in this situation, we require a strict separation of different
cloud services deployed on the same device. Furthermore, the resource provider
may wish to reserve a certain amount of resources for own local services, i.e., ensure
that cloud services deployed to the own device can use those resources explicitly
assigned to them.

To address these requirements for efficiently (in terms of processing and memory
overhead) separating cloud services, PriverCloud employs virtualization to sandbox
different cloud services running on the same device. Sandboxing cloud services using
virtualization comes with two benefits. First, virtualization allows us to protect a
cloud service against other cloud services running on the same device. Second, we
can use virtualization to closely restrict access to resources, e.g., to prevent direct,
unrestricted access of cloud services to the Internet or file system, and to enforce the
usage of dedicated APIs to access resources. For example, cloud services can only
use dedicated PriverCloud sockets that automatically enforce security and authen-
tication for network communication. Likewise, access to file storage (realized using
PriverCloud’s underlying DHT) is only possible through API endpoints that auto-
matically and transparently handle the encryption and decryption of data, similar
to SCSlib in the context of the IoT (cf. Section 5.2).

However, one of the inevitable challenges of PriverCloud results from the limited
processing resources, especially when considering resource-constrained, cheap de-
vices (cf. Section 6.2.1.3), which prohibits virtualization using fully-fledged virtual
machines. To account for this challenge, we employ lightweight virtualization mech-
anisms to not pose additional processing overhead on the devices. More specifically,
we use Linux containers (LXC), an operating-system-level virtualization, to realize
the AppScale-compatible PaaS environment, where only the platform APIs can be
accessed (cf. Section 6.2.2.1), and thus avoid the overhead of full virtual machines.
We performed measurements to verify that even a resource-constrained Raspberry
Pi is able to launch more than 30 basic cloud services (delivering a simple website)
isolated in individual LXC containers in parallel.

Beyond Social Trust

While social trust might be sufficient for resource providers to provide their family
and close friends with access to storage and processing resources, users might still

6.2. PriverCloud: A Secure Peer-to-Peer Cloud Platform 213

fear that resource providers operate cloud services in a dishonest manner, e.g., to
get access to sensitive information during the execution of a cloud service. Likewise,
attacks targeting the devices that form a PriverCloud instance can subvert the trust
founded on social relationships. To protect against such maliciously altered devices,
PriverCloud offers the option to leverage trusted platform modules (TPMs), which
are available on most modern desktop computers, to remotely attest the integrity of
a device before deploying a cloud service to this device. A TPM enables hardware-
based security by providing cryptographic operations such as key generation, en-
cryption, signature generation, and cryptographic hash computation [TCG07].

Employing a TPM in PriverCloud, the goal is to ensure that the system on which we
deploy a cloud service has not been tampered with and operations such as inspecting
the memory of a running cloud service are not possible.

Furthermore, such an approach allows for the deployment of secrets such as private
keys necessary to access encrypted data and TLS certificates to cloud services with-
out the respective resource provider being able to access this information. Hence, we
need to create a chain of trust from the TPM of a device to the process of deploying
and operating a cloud service on this device. To this end, we introduce a trusted
component and a trusted kernel. The trusted component is a small piece of software
that runs in user space and allows users to securely bootstrap their cloud services,
especially with respect to deploying secrets to a starting cloud service.

Likewise, the trusted kernel is a modified Linux kernel that ensures the correct
operation of the trusted component and can later be extended to protect access to
the volatile memory of cloud services.

Finally, the TPM enables users to remotely attest the integrity of the trusted kernel
and thus create a chain of trust from the TPM to the deployment and operation of
their cloud services [TCG07]. By leveraging the capabilities of TPMs, PriverCloud
allows users to check if a specific device executes only trusted software components
[MPP+08] and hence realize a trusted platform for service execution.

6.2.3 Evaluation

To assess the feasibility of PriverCloud and to thoroughly quantify its performance,
we implemented a prototype for the device side of PriverCloud using the C program-
ming language. Additionally, we realized the ControlCenter as a PriverCloud service
using Python. We rely on OpenSSL for the cryptographic operations, LXC for creat-
ing virtualized environments, dnspython to interface with Dynamic DNS, the Linux
kernel as the foundation for a trusted operating system, and IBM’s Software Trusted
Platform Module as the library for all TPM related tasks. As cryptographic primi-
tives, we use AES with 256 bit keys in CBC mode for encrypting data and SHA-256
as HMAC for protecting the integrity of data. To securely bootstrap cloud services,
we rely on the cryptographic primitives offered by TPMs, namely SHA-1 for ver-
ifying the integrity of code regions and AES with 128 bit keys in CCM mode for
encrypting secrets.

214 6. Decentralizing Individual Cloud Services

We utilize two different classes of devices for our evaluation, namely embedded de-
vices and desktop computers. As an exemplary embedded device, we chose the
Raspberry Pi Model B with a 700 MHz ARM11 CPU, 512 MB of RAM, and Rasp-
bian Jessie Linux as the operating system. For the class of desktop computers, we
selected a machine with a four core 2.93 GHz Intel i7 870 CPU, 4 GB of RAM, and
Ubuntu 14.04 as the operating system with our custom trusted kernel. To create a
PriverCloud instance for evaluation purposes, we connect two Raspberry Pis and one
desktop computer using a 100 Mbit/s switch. Whenever we measure communication
between a user device and a device or cloud service in a PriverCloud instance, we
use one of the Raspberry Pis as user device.

In the following, we first evaluate the processing and storage overhead of Priver-
Cloud’s secure storage. We then study the overhead of secure communication and
authentication in PriverCloud, especially with respect to the deployment of cloud
services in a PriverCloud instance. Finally, we investigate the trade-off between
service reliability and consumed bandwidth for service monitoring.

6.2.3.1 Secure Storage

All data that cloud services persistently store in PriverCloud is automatically en-
crypted and integrity protected (cf. Section 6.2.2.2). This strong level of security in-
troduces two types of overhead: (i) storage overhead for data stored in PriverCloud’s
DHT and (ii) processing overhead for performing the necessary cryptographic oper-
ations. In the following, we quantify these overheads.

Storage Overhead

PriverCloud automatically applies encryption and integrity mechanisms to all data
before it is persistently stored to ensure that only user-controlled services can access
this data. These mechanisms increase the required storage space. More specifically,
for encrypting data using AES in CBC mode, we require a constant overhead of
16 bytes for the random initialization vector and additionally between 1 and 16 bytes
of padding, as AES operates on blocks of size 16 bytes. Furthermore, protecting
integrity based on HMAC with SHA-256 results in a constant overhead of 32 bytes
per data item. In summary, PriverCloud’s secure storage adds a constant storage
overhead of at most 64 bytes per stored data item, irrespective of the size of the
data item. To put these numbers into perspective, for a small file of size 1 KB, this
results in a storage overhead of 6.4 %. If we consider larger files, e.g., a compressed
image file of size 1 MB, this overhead reduces to only 0.0064 %.

Processing Overhead

Besides resulting in a modest overhead in storage size, PriverCloud’s secure storage
also induces processing overheads for encryption and integrity protection. To quan-
tify these overheads, we measure the processing time required for encrypting data
and applying integrity protection before data is persisted in PriverCloud’s storage

6.2. PriverCloud: A Secure Peer-to-Peer Cloud Platform 215

Figure 6.4 The overhead of PriverCloud’s secure storage results from encryption as well as
integrity protection and scales roughly linearly with increasing data size.

for different data sizes in Figure 6.4. For each measurement point, we conduct 100
repetitions and report on the mean over these repetitions with 95 % confidence inter-
vals. As expected, the processing overheads resulting from encryption and integrity
protection increase with the data size, as both AES encryption as well as SHA-256
as underlying hash function for integrity protection process data in blocks and in-
creasing data size results in more blocks that need to be processed. Additionally,
we observe that the desktop computer benefits from its stronger processing power
and can perform both operations noticeably faster. For the Raspberry Pi, the over-
head required for encryption is nearly twice as high as the overhead resulting from
integrity protection. More specifically, for a data size of 100 KB, the Raspberry Pi
requires 10.96 ms for encryption and 6.51 ms for integrity protection. In compari-
son, the desktop-grade machine requires only 0.40 ms for encryption and 0.46 ms for
integrity protection in the same setting. Putting these numbers into perspective,
a Raspberry Pi can perform the necessary cryptographic operations to persistently
store 57 files of size 100 KB per second in PriverCloud’s secure storage. These num-
bers increase to 1190 files per second for the more powerful desktop-grade machine
under study. We believe that these numbers are clearly sufficient for many real-world
use cases, especially when considering individual cloud services that serve only one
user or at most a small group of users (cf. Section 6.1).

6.2.3.2 Secure Communication and Authentication

Besides automatically ensuring confidentiality and integrity of data during storage,
PriverCloud also automatically secures and authenticates all communication, includ-
ing the communication required for deploying cloud services. In the following, we
evaluate the impact of PriverCloud’s secure communication and authentication on
TLS handshakes and cloud service performance as well as quantify the overhead of
securely deploying cloud services in PriverCloud.

Impact on TLS Handshake

To support the deployment of multiple cloud services (possibly from different users)
to one device with only one IP address, PriverCloud automatically demultiplexes

216 6. Decentralizing Individual Cloud Services

Figure 6.5 PriverCloud’s secure socket implementation minimally increases the time required
for performing a full TLS handshake with a cloud service running on top of PriverCloud.

incoming TLS connections to the correct cloud service running inside a secure ex-
ecution environment (cf. Section 6.2.2.2). We begin our evaluation of the resulting
overheads by studying the impact of using these automatically secured PriverCloud
sockets on the time required for completing a TLS handshake, i.e., those operations
and communication required to establish a secure communication channel. To this
end, we measure the time required to perform a full TLS handshake between a client
running on a Raspberry Pi and a PriverCloud cloud service running on both, an-
other Raspberry Pi and the desktop-grade machine. We perform 10 000 handshakes
both using PriverCloud’s secure socket and the default socket implementation of
Linux and compare their mean runtime for the complete TLS handshake with 95 %
confidence intervals in Figure 6.5.

For cloud services running on the Raspberry Pi, the full handshake requires on
average 195.81 ms using default sockets and 196.00 ms using PriverCloud sockets.
Likewise, on the desktop-grade machine, using default sockets result in a handshake
runtime of on average 110.21 ms compared to 112.03 ms when using PriverCloud
sockets. Hence, PriverCloud’s secure sockets have only a small, negligible impact on
the time required for completing a full TLS handshake with a cloud service running
on top of PriverCloud.

Impact on Cloud Service Performance

Besides the initial handshake, PriverCloud sockets potentially also impact the per-
formance of cloud services’ communication over the established secure communica-
tion channel. To capture this effect, we again measure the amount of time required
for communicating a specific amount of data from a client to a cloud service and
back. More specifically, a client running on a Raspberry Pi transmits a certain
amount of data to a cloud service running on another Raspberry Pi as well as a
desktop-grade machine. Subsequently, the cloud service echoes the received data
back to the client on the Raspberry Pi. In Figure 6.6 we report on the resulting
mean transmission time over 1000 measurements with 95 % confidence intervals for
an increasing amount of transmitted data in each direction. We measure only the
time required for the actual transmission of data and consequently omit the time

6.2. PriverCloud: A Secure Peer-to-Peer Cloud Platform 217

Figure 6.6 Using PriverCloud sockets adds a modest overhead for the transmission time
required for communicating with a cloud service.

required for establishing the connection, i.e., for performing the TLS handshake.
Again, we compare our implementation of PriverCloud sockets against the default
socket implementation of Linux.

Overall, we observe that the transmission time increases roughly linearly with the
amount of transmitted data when using PriverCloud sockets. For 1 KB of trans-
mitted data (in both directions), using PriverCloud sockets increases the required
transmission time by 34.46 % (from 2.67 ms to 3.59 ms) on the Raspberry Pi and by
15.90 % (from 1.95 ms to 2.26 ms) on the desktop-grade machine. Likewise, for 10 KB
of transmitted data, we observe an increase of 22.20 % (from 11.26 ms to 13.76 ms)
on the Raspberry Pi and of 4.35 % (from 7.36 ms to 7.68 ms) on the desktop-grade
machine. Especially for larger and hence longer transmissions, this overhead, which
is necessary to effectively separate different cloud services running on the same phys-
ical device, hence constitutes a manageable performance penalty.

We observe a spike in the required transmission size for PriverCloud sockets at about
1 KB on the Raspberry Pi (and to a lesser extent also for the desktop machine).
This effect results from our implementation of PriverCloud sockets where a buffer
of size 1024 byte requires fragmentation for data larger than about 1 KB. We do
not observe this effect for larger data sizes since data then exceeds the MTU of the
underlying connection and is thus fragmented already on the network layer, which
further reduces the performance impact of PriverCloud sockets on cloud services.

Deployment of Cloud Services

Not only the communication with cloud services but also the initial deployment of
cloud services to devices in a PriverCloud instance is influenced by the underlying
security mechanisms that account for privacy when delivering cloud services.

In the following, we hence analyze the time required for deploying cloud services
in PriverCloud. To this end, we report on the mean time required for deploying a
cloud service over 1000 repetitions with 99 % confidence intervals. We specifically
crafted a simple cloud service for these measurements that does not realize any actual
functionality. In our measurements, the ControlCenter that deploys the cloud service

218 6. Decentralizing Individual Cloud Services

Figure 6.7 The time required for deploying a cloud service in a PriverCloud instance amounts
to about 1 s and predominantly results from remote attestation and starting the cloud service
within a secure execution environment.

runs on the same physical device to which it also eventually deploys the cloud service,
which rules out any influences of the underlying network on the measurement results.

In Figure 6.7 we show the mean time required for performing the necessary steps
for deploying a cloud service. First, the ControlCenter performs the SETUP for
cloud service deployments such as receiving the necessary TLS certificates from the
secure PriverCloud storage (these operations can be cached and only have to be
performed once for the first deployment of a cloud service). The required opera-
tions require on average 4.17 ms on the desktop-grade machine and 29.98 ms on the
resource-constrained Raspberry Pi. Subsequently, the ControlCenter establishes a
TLS connection to the target device, i.e., the device to which the cloud service shall
be deployed. This process consumes 216.51 ms on the Raspberry Pi (cf. Figure 6.5)
respectively 15.02 ms on the desktop machine (this number is smaller than reported
in Figure 6.5 since the handshake does not involve a Raspberry Pi as client this
time). To finalize the initialization phase, the ControlCenter sends a request for
remote attestation (RA_REQ) to the target device. Since this operation requires
only the transmission of a nonce, we can perform it within a negligible 0.03 ms on
the desktop machine respectively 0.25 ms on the Raspberry Pi.

Upon reception of the remote attestation request, the target device performs the re-
mote attestation (RA) and sends the corresponding results (RA_RES) back to the
control center. This step can be performed in on average 738.46 ms on the desktop
machine respectively 317.23 ms on the Raspberry Pi. Notably, the Raspberry Pi out-
performs the desktop machine in this step. Since the Raspberry Pi does not provide
a hardware TPM, we have to rely on a software TPM for our measurements that,
despite offering less security, operates considerably more efficient. Hence, executing
the remote attestation heavily depends on the processing performance of the under-
lying (hardware) TPM. After receiving the remote attestation response (RA_RES),
the ControlCenter performs the necessary cryptographic operations to validate the
remote attestation and subsequently triggers the start of the cloud service (S). On
a desktop machine, these operations consume about 0.69 ms compared to 13.18 ms
on the Raspberry Pi. This difference mainly results from the slower processing of
cryptographic operations on the Raspberry Pi (cf. Section 6.2.3.1).

6.2. PriverCloud: A Secure Peer-to-Peer Cloud Platform 219

Now, the target device can perform the start of the cloud service (S) and sends an ac-
knowledgment of the successful start back to the ControlCenter (S_RES). In total,
starting a cloud services requires 277.63 ms on the desktop machine and 301.33 ms
on the Raspberry Pi. We break down this total runtime into its individual compo-
nents in the following and illustrate this using hatching in Figure 6.7. The target
device first obtains the cloud service’s binary from the secure PriverCloud storage,
which requires 0.01 ms on the desktop machine and 0.12 ms on the Raspberry Pi
(for local communication). Subsequently, the target device verifies the integrity of
the binary using its digital signature within 16.16 ms on the desktop machine re-
spectively 97.77 ms on the Raspberry Pi. Now, the ControlCenter deploys the secret
(used to protect the cloud service’s data) to the cloud service. The necessary cryp-
tographic operations for this step require 5.70 ms for the desktop machine compared
to 93.30 ms for the Raspberry Pi.

Finally, the target device creates the secure execution environment and actually
starts the cloud service. This process takes 255.40 ms on the desktop machine re-
spectively 106.91 ms on the Raspberry Pi. The noticeably higher processing time
on the desktop machine results from an implausibly long delay when creating LXC
containers. While we could not identify the root cause of this delay we verified that
it also occurs with an unmodified kernel and thus does not result from our modifi-
cations. Still, we believe that this likely malfunction can be circumvented to further
speed up the cloud service deployment. Finally, processing the acknowledgment of
the successful start of the cloud service (S_RES) on the ControlCenter requires only
0.28 ms on the desktop-grade machine and 3.14 ms on the Raspberry Pi.

In total, the time required for securely deploying a cloud service in PriverCloud
requires 1.04 s on the desktop machine and 0.87 s on a Raspberry Pi. The numbers
for the desktop machine can likely be improved by optimizing the creation of LXC
containers, while the runtime on the Raspberry Pi probably increases modestly when
switching from a software TPM to a hardware TPM (hardware TPMs are typically
slower than those emulated in software). Still, we are able to securely deploy a cloud
service within about 1 s, even in the face of resource-constrained devices such as a
Raspberry Pi. Such a short deployment time is especially important when having
to restart services in case of device or network failures.

Notably, the majority of computational effort occurs on the target device (98.05 %
for the desktop machine and 69.83 % for the Raspberry Pi, respectively) that at the
time of deployment likely has spare resources anyways, because it was selected to
operate the cloud service from now on. Hence, we do not put a huge computational
burden on the device that operates the ControlCenter and might not have large
amounts of spare resources.

6.2.3.3 Service Reliability Trade-off

To ensure the availability and reliability of cloud services, PriverCloud monitors the
reachability of deployed cloud services. More specifically, a user’s ControlCenter
continuously sends out heartbeat messages to all deployed cloud services of this
user (cf. Section 6.2.2.2). Likewise, PriverCloud operates multiple instances of the

220 6. Decentralizing Individual Cloud Services

Figure 6.8 The number of heartbeats in a PriverCloud instance scales linearly in the number
of deployed cloud services and exponentially in the number of backup ControlCenters.

ControlCenter that monitor each other and act as a backup in case the primary
ControlCenter fails. As PriverCloud relies on OpenSSL’s heartbeat mechanism, each
heartbeat request results in an IP packet of size 118 byte, each response requires an
IP packet of size 118 byte as well, and the acknowledgment for the response consumes
another 52 byte. Consequently, each heartbeat creates 288 byte of network traffic (on
the network layer). In the following, we analyze the network traffic resulting from
the ControlCenters and cloud services of one user.

The number of heartbeats that are sent in a user’s PriverCloud instance depends on
the number of cloud services and ControlCenters this user has deployed. Here, the
first ControlCenter monitors all cloud service and the other ControlCenters, while
the remaining ControlCenters only monitor the other ControlCenters.

In a first step, we calculate the number of heartbeat requests that are created within
one heartbeat interval, i.e., each ControlCenter sends exactly one heartbeat request
to each monitored cloud service and ControlCenter. Hence, the number of heartbeats
depends on the number of deployed cloud services and ControlCenters as depicted
in Figure 6.8. The number of heartbeat requests is linear in the number of deployed
cloud services (as each cloud service is monitored by only one ControlCenter) and
exponentially in the number of ControlCenters (as each ControlCenter monitors all
other ControlCenters). For example, when operating one ControlCenter, no heart-
beat requests are necessary when no cloud services are deployed, while monitoring 5
cloud services requires 5 heartbeat requests and 10 deployed cloud services result in
10 heartbeat requests. In contrast, a PriverCloud instance with 10 deployed Cloud-
Centers already requires 90 heartbeats, even if no cloud services are deployed. This
number increases only modestly to 95 heartbeats for 5 deployed cloud services and
100 for 10 deployed cloud services, respectively.

To derive the network overhead actually resulting from PriverCloud’s heartbeat
mechanisms, we additionally have to take the heartbeat frequency, i.e., how many
heartbeats a ControlCenter sends to each monitored cloud service and to each other
ControlCenter per second. Intuitively, a higher heartbeat frequency allows to detect
failures earlier but also puts more burden on the network.

In Figure 6.9, we study the network traffic of one ControlCenter for an increasing
heartbeat frequency and number of ControlCenters in one PriverCloud instance. We

6.2. PriverCloud: A Secure Peer-to-Peer Cloud Platform 221

Figure 6.9 The network overhead generated by one user’s ControlCenter scales linearly in the
number of ControlCenters in the user’s PriverCloud instance and the heartbeat frequency.

omit the traffic necessary for monitoring cloud services, since monitoring these results
in less traffic (see above). When monitoring one other ControlCenter at a frequency
of 1 heartbeat/s, a ControlCenter creates outgoing traffic of 0.17 KB/s and incoming
traffic of 0.12 KB/s, totaling to a network traffic of 0.29 KB/s. As ControlCenters
monitor each other pairwise, this number doubles to a network traffic of 0.58 KB/s
on each ControlCenter for a PriverCloud instance with two ControlCenters. When
considering a PriverCloud instance with five ControlCenters monitoring each other
at 5 heartbeat/s, the total network traffic amounts to 11.52 KB/s per ControlCenter.
These numbers are well manageable with today’s residential access links that typical
offer bandwidth in the order of tens of Mbit/s.

A reasonable selection of the heartbeat frequency is not only imperative to reduce
network overhead but also to achieve fast detection and recovery of device, network,
and software failures. Furthermore, to account for temporary aspects such as a
dropped single packet, we propose a grace period, i.e., a certain number of miss-
ing consecutive heartbeats, before we assume a failure and hence start our recovery
procedure, i.e., restarting the failed cloud service or ControlCenter on another de-
vice. For example, with a heartbeat frequency of 1 heartbeat/s and a grace period
of 5 heartbeats, we can detect a failure within at most 6 s with modest costs in
terms of network overhead. Since restarting a cloud service takes about 1 s (cf. Sec-
tion 6.2.3.2), we can completely recover from failures within about 7 s. While this is
sufficient for most use cases, it can be further reduced by increasing the heartbeat
frequency or by decreasing the grace period. Such optimizations, however, come
at the cost of an increased amount of required network traffic for larger heartbeat
frequencies respectively an increased likelihood of unnecessary migration overhead
if cloud services recover from short-term failures after a too short grace period.

Finally, another important trade-off between reliability and resource overhead is the
question of how many ControlCenters to deploy in a user’s PriverCloud instance.
While the definitive answer to this question has to factor in parameters such as the
number of devices available to deploy ControlCenters to and the number of cloud
services that need to be monitored, an important consideration is that the network
overhead scales exponentially in the number of ControlCenters. Hence, we believe
that—similar to traditional cloud deployments (cf. Section 4.3.2.3)—a redundancy of

222 6. Decentralizing Individual Cloud Services

three ControlCenters constitutes a sensible trade-off between reliability and resource
consumption. For larger PriverCloud instances with many cloud services increasing
the number of ControlCenters up to five might be conceivable, while using even more
ControlCenters is likely not advisable.

6.2.4 Summary and Future Work

PriverCloud is motivated by the observation that not all classes of cloud services
unconditionally require the scalable resources made available by public cloud in-
frastructure. Individual services, i.e., those services where users interact only with
their own data, can often be realized on a single, not very powerful device. Hence,
shifting these services away from public clouds to commodity hardware provided
by trustworthy persons can significantly strengthen users’ privacy. However, such
an approach comes with several challenges, ranging from resource constraints over
preserving the advantages offered by public clouds to the need to extend trust and
allow for easy deployability.

To overcome these challenges, we present PriverCloud, our approach for decen-
tralizing individual cloud services, especially focusing on privacy-sensitive services.
PriverCloud deploys users’ services solely to trusted infrastructure contributed by
close friends and family and thus breaks up the inherent centrality of cloud com-
puting. To this end, PriverCloud relies on standardized security mechanisms to
achieve confidentiality and integrity of data during transport and security and em-
ploys lightweight virtualization to separate different cloud services executed on the
same device. By continuously monitoring devices and cloud services in a Priver-
Cloud instance, we achieve high reliability despite relying on commodity hardware
deployed in home networks. PriverCloud enables the execution of already existing
cloud services that were developed for the Google App Engine platform [Goo18a]
and hence eases the migration from today’s public cloud offers. Additionally, Priver-
Cloud offers the option to employ TPMs to substantiate real-life trust relationships
with technical guarantees.

As our evaluation of PriverCloud shows, it is feasible to securely distribute a user’s
individual cloud services to commodity hardware in home networks. PriverCloud’s
secure storage induces a constant negligible storage size overhead and allows for
the processing of tens of encrypted files per second even on constrained devices.
Likewise, PriverCloud’s mechanism to automatically secure all communication with
cloud services using standard transport layer security mechanisms adds only a man-
ageable performance penalty to connections with and between cloud services. When
deploying a cloud service to a new device, PriverCloud is able to perform the nec-
essary security operations in about 1 s, even when employing a TPM to further
substantiate trust assumptions.

PriverCloud’s monitoring approach based on TLS heartbeats allows to reliably de-
tect and recover from device and cloud service failures within about 7 s for conserva-
tive choices of monitoring parameters. This timeframe can further be reduced with
more aggressive monitoring parameters. So far, our evaluation has been focused on

6.3. Conclusion 223

measurements in reliable high-speed local networks. For future work, it would be
interesting to also study the impact of higher latencies and potentially packet loss
on the overhead for deploying and monitoring cloud services.

Although we focus on home devices as the most challenging deployment scenario in
the scope of this dissertation, PriverCloud instances can also be deployed on more
powerful infrastructures, e.g., in corporate settings or federated clouds. In contrast
to using only own infrastructure to operate services, such a deployment would en-
able enterprises to benefit from a cloud infrastructure even if legislation or customers’
concerns render the utilization of traditional cloud computing challenging. Account-
ing for the different security assumptions and resource constraints in such scenarios
constitutes an interesting avenue for future work. Likewise, when relying on TPMs,
selected aspects of PriverCloud’s architecture might even be realized using resources
of public cloud infrastructures, e.g., as proposed in the context of SealedCloud to
safeguard against insider attacks [JMR+14].

Furthermore, besides the technical challenges discussed and approached in this chap-
ter, the concept of PriverCloud also constitutes exciting legal and economic questions
for future work. First and foremost, the question arises how law can be enforced in
such a decentralized setting. In our opinion, PriverCloud shows great potential in
realizing a trade-off between valid interests involved with criminal prosecution and
the people’s fear of mass surveillance, especially through foreign intelligence agen-
cies. Individual devices in a PriverCloud instance can still be seized or wire-tapped
if need arises, however, the inherent decentrality renders the unduly monitoring of
all users virtually impossible.

Another interesting legal question concerns the liability of the device owner, espe-
cially if a cloud service is misused for cybercrimes such as sending SPAM emails or
hacking. From a technical perspective, we aim to counter these threats by our trust
model (cf. Section 6.2.1.2) and restricting access to resources (cf. Section 6.2.2.3).
When focusing on economic questions for future work, the main concern is the
motivation or compensation for providing resources for others. Here, we see two
promising complementary approaches. As we build on existing social trusts, users
have good reason to rely on the concept of quid pro quo. Still, should users encounter
an imbalance in resource-usage and want to be compensated for this, we propose to
use micro-payment schemes such as Bitcoin [Nak08] to reimburse resource providers.

In conclusion, PriverCloud constitutes an approach for retaining privacy when us-
ing cloud services by moving them from public clouds to decentralized private
cloud instances. Thereby, PriverCloud breaks up the inherent centrality and non-
transparency of cloud computing without the need to give up its advantages.

6.3 Conclusion

Our work presented in this chapter is driven by our anticipation that—besides all
efforts to make cloud computing more privacy-friendly—users still might have ex-
traordinary high privacy requirements and/or mistrust into cloud providers. We

224 6. Decentralizing Individual Cloud Services

complemented this view by our observation that not all categories of cloud services
imperatively need large amounts of resources as typically provided by public cloud
infrastructure. Especially for individual services, e.g., calendar and contact synchro-
nization, we hence proposed to move these services with strong privacy requirements
away from public cloud systems to trusted infrastructure operated by users’ close
friends and family.

To achieve this goal, we proposed PriverCloud, our technical approach that utilizes
idle resources of commodity devices operated in home networks to form a trusted,
decentralized peer-to-peer system as a foundation to securely deploy and operated
cloud services. As PriverCloud solely requires cooperation between users, we effec-
tively eliminate any trust assumptions with respect to traditional cloud service or
infrastructure providers. To further strengthen trust between users with technical
security measures, PriverCloud optionally allows utilizing TPMs to fortify the pri-
vacy of users’ data. Notably, PriverCloud eases the migration away from today’s
public cloud deployments as existing cloud services developed for the AppScale or
Google App Engine cloud platforms can be deployed in PriverCloud instances with
minor code modifications. Our evaluation of PriverCloud’s performance indicates
that PriverCloud introduces only modest overhead for its security measures even on
constrained devices as well as realizes high availability by efficiently monitoring the
reachability of cloud services and automatically recovering from detected failures of
devices and cloud services within few seconds.

In this chapter, we focused on the research question on how users can preserve their
privacy when interacting with cloud services. Notably and in contrast to the other
contributions presented in this dissertation (cf. Chapters 3 to 5), we only focus on
cooperation between different users and deliberately do not rely on cooperation from
the other actors in the cloud computing landscape, most notably cloud service and
infrastructure providers. To achieve this goal, the work presented in this chapter
mainly helps in overcoming the inherent centrality of cloud computing as well as
users’ missing control as core problems for privacy in cloud computing. PriverCloud
does not require any cloud services to deliver its functionality and hence counters
the risks resulting from a centralized cloud computing landscape. Likewise, users
explicitly decide whom they trust to faithfully operate their cloud services and thus
have a high level of control over the delivery of their cloud services.

Besides mainly focusing on these two core problems, we partly address the core
problem of technical complexity and missing transparency, since users know which
devices constitute their PriverCloud instance as well as who owns and operates
these devices. By completely moving away from the traditional centralized cloud
deployment model, we propose an arguably quite radical approach to delivering
a specific class of cloud services with high privacy requirements by shifting the
execution of services from traditional cloud infrastructure to devices operated by
trustworthy individuals such as a user’s relatives and close friends. Yet, we believe
that this approach nicely complements our other approaches to account for privacy in
the cloud computing landscape, especially by explicitly addressing also extraordinary
privacy-skeptical users.

7
Conclusion

Cloud computing is a powerful concept to make service delivery on the Internet
more flexible, efficient, and reliable, most notably by offering the possibility to au-
tomatically scale the amount of utilized resources based on the current demand. As
cloud computing offers numerous advantages, for both the operators of services on
the Internet as well as for the customers of these services, there are clear incentives
for shifting the delivery of services from own infrastructure to the cloud.

Cloud computing, however, also has its drawbacks, one prominent among them being
the introduction of serious privacy challenges. These privacy challenges mainly origi-
nate from four core problems (cf. Section 1.1.3): (i) technical complexity and missing
transparency resulting from the immanent abstraction of resources, (ii) opaque leg-
islation with respect to the jurisdiction that applies to users’ data, (iii) inherent
centrality of the cloud computing market where a small number of providers jointly
dominate the market, and, as a result, (iv) missing control of users over their data
when it is handled in the cloud. Overcoming these challenges is key to secure the
success of cloud computing and hence to allow a wide range of corporate and private
users to profit from the advantages of cloud computing without having to sacrifice
their privacy to a large extent.

In this dissertation, we addressed the challenge of accounting for privacy in cloud
computing from a technical perspective. We first observed that it is insufficient
to solely focus on single actors in the cloud computing landscape to overcome
these inherent core problems for privacy. Consequently, we turned our focus to
cooperation—either between different actors or between users. Hence, we proposed
technical approaches that rely on cooperation where each of the actors in the cloud
computing landscape contributes the technical means they have under their control
to overall increase privacy. To this end, we formulated three research questions:
(i) how infrastructure providers can support service providers and cloud users in ex-
ecuting control over privacy, (ii) how service providers can build privacy-preserving

226 7. Conclusion

cloud services on top of cloud infrastructure, and (iii) how users can preserve their
privacy when interacting with cloud services. These research questions guided us
through the individual contributions of this dissertation which target the different
actors in the cloud computing landscape and address individual aspects underlying
these three research questions.

In the remainder of this chapter, we revisit our contributions and the achieved
results (Section 7.1), discuss how these contributions address the core problems of
privacy in cloud computing (Section 7.2), summarize the impact of our work so
far (Section 7.3), identify promising future research directions (Section 7.4), and
conclude this dissertation with some final remarks (Section 7.5).

7.1 Contributions and Results

We addressed the three research questions of this dissertation by providing four
distinct contributions. In the following, we summarize these contributions, our main
results, and discuss how our contributions answer the individual research questions.

7.1.1 Raising Awareness for Cloud Usage

Our first contribution targeted the research question on how users can preserve their
privacy when interacting with cloud services and was motivated by the observation
that users are often unaware of their exposure to cloud services when using everyday
technology such as email, mobile apps on smartphones, and IoT devices. To over-
come this situation, we strived to uncover this cloud usage and raise users’ awareness
of the resulting privacy risks, hence empowering to take appropriate countermea-
sures. Alongside two deployment domains, cloud-based email and mobile apps on
smartphones, we have shown how exposure to cloud services can be detected. Ad-
ditionally, we presented an approach to realize privacy-preserving comparisons that
enables users to put their cloud usage into context by comparing against their peers.

For cloud-based email as our first deployment domain, we presented MailAnalyzer,
which dissects protocol headers of received emails to uncover exposure to cloud
services. We applied MailAnalyzer to perform large-scale measurements of the email
infrastructure used when sending email as well as to detect the exposure to cloud
services caused by millions of authentic received emails. Our results revealed that
users’ privacy is indeed impacted by the exposure to cloud services, especially since
the usage of cloud services often cannot be observed by less technically proficient
users simply by looking at the sender or receiver information of an email.

Likewise, for mobile apps on smartphones as our second deployment domain, Cloud-
Analyzer passively analyzes the network traffic of mobile apps on off-the-shelf An-
droid smartphones to detect communication with cloud services. We evaluated the
cloud usage of mobile apps based on CloudAnalyzer in a user study with volunteers,
by crawling the most popular mobile websites, and by comparing the most popular
apps across the five countries with the highest mobile app usage. CloudAnalyzer

7.1. Contributions and Results 227

uncovered that nearly all apps connect to cloud services, with an average number of
more than three utilized cloud services per app, while about one-third of the apps
under study communicate exclusively with cloud services.

To enable individual users to put their cloud usage into perspective, we adapted the
concept of comparison-based privacy [ZHHW15] to offer users the option to anony-
mously compare themselves with their peer groups and based on the comparison re-
sult, change their behavior to preserve their privacy. We introduced a privacy proxy
that obliviously computes noisy aggregate cloud usage statistics using secure com-
putations without anyone learning the contributions of individual users in cleartext.
We performed a feasibility study and found that our approach achieves a reasonable
trade-off between privacy protection and utility, i.e., accuracy of statistics.

In summary, the results derived from our first contribution have shown that users
are indeed exposed to different cloud services. Our contribution provides users with
transparency over their cloud usage through individual statistics and by contextual-
izing these statistics through anonymous comparisons with peers. This contribution
is not only valuable in itself to support users with more transparency over their
cloud usage but also provides a strong motivation for more privacy-friendly cloud
computing as realized by the contributions of this dissertation.

7.1.2 Data Handling Requirements-aware Cloud Infrastructure

With our second contribution, we addressed the research question on how infrastruc-
ture providers can support service providers and cloud users in having control over
privacy. To this end, we proposed a data handling requirements-aware cloud infra-
structure in which users annotate their data with data handling requirements before
sending them to the cloud. This approach enables users to express their privacy
expectations and equips cloud providers with the technical means to respect these
expectations when delivering their services. Within the scope of this dissertation,
we focused on providing the functionality for supporting privacy requirements and
did not specifically target the orthogonal challenge of providing technical guarantees
that cloud providers indeed respect these requirements. As a foundation for real-
izing such a cloud infrastructure, we developed a compact privacy policy language
that allows users to express their privacy expectations and devised a cloud storage
system that assigns data to storage nodes based on these privacy expectations.

CPPL, our compact privacy policy language enables users to express their privacy
requirements in a textual, human-readable policy and subsequently compresses this
policy using standardized domain knowledge. Thus, CPPL achieves size and pro-
cessing efficient compression of privacy policies which, unlike related work, can be
directly used for interpretation at cloud nodes without requiring prior decompres-
sion. Indeed, our evaluation of CPPL has shown that we are able to realize huge
policy size savings by up to two orders of magnitude when compared to related work
and hence can realize per-data item privacy policies. Furthermore, a public cloud
node can interpret tens of thousands of compressed policies per second, sufficient for
handling data in real-world use cases.

228 7. Conclusion

Based on privacy requirements expressed with CPPL, PRADA, our data handling
requirements-aware cloud storage system, stores data only on those cloud nodes
that fully comply with the attached requirements. We implemented PRADA for the
popular cloud storage system Cassandra and thereby illustrated the applicability
and feasibility of our approach. Our performance evaluation of PRADA revealed
that support for data handling requirements in cloud storage systems moderately
increases query completion times and adds only a constant small storage overhead.
Notably, PRADA manages to keep the load of the cluster as balanced as possible
under given privacy constraints and does not affect the performance when storing
data without attached data handling requirements.

The results we derived from our second contribution showcase the feasibility of a
data handling requirements-aware cloud infrastructure. With CPPL, we presented
a approach for users to specify their privacy requirements on a per-data item level
to make cloud providers aware of their privacy demands. Likewise, with PRADA
we provided cloud providers with the possibility to store data only on cloud nodes
that fulfill users’ requirements. Consequently, we realize user control over data as
cloud providers can now fulfill user demands when assigning data to storage nodes.

7.1.3 Privacy-preserving Cloud Services for the Internet of Things

For our third contribution, we studied the research question of how service providers
can build privacy-preserving cloud services on top of cloud infrastructure. To this
end, we selected the IoT as an exemplary application domain for cloud services be-
cause of the high privacy requirements resulting from sensitive information often
sensed and collected by IoT devices. In this setting, we proposed two approaches
to aid service providers with performing security operations and hence ease the pro-
cessing of protected IoT data stored in the cloud and the securing of configuration,
authorization, and management of devices and networks in the cloud-based IoT.

To relieve service developers from having to implement the security functionality
necessary to access protected IoT data on their own, we proposed SCSlib, a security
library that transparently handles the security functionality required for encrypting
protected IoT data in the cloud. Hence, we support domain specialists who typically
do not specialize in security to realize privacy-preserving cloud services for the IoT
based on a cryptographically enforced access control system for sensitive data. We
evaluated SCSlib on public cloud infrastructure to confirm the feasibility of our
approach. Our evaluation has shown that especially SCSlib’s caching scheme for
cryptographic keys helps to improve processing times when accessing protected IoT
data in the cloud in sequential or random order.

To expand privacy protection from mere data to the control of IoT devices and
federated IoT networks in the cloud-based IoT, we introduced D-CAM. Our pro-
posed design of D-CAM comprises a distributed architecture that cryptographically
secures messages in a tamper-resistant log such that only authorized entities can
issue control operations, e.g., changing the configuration of an IoT device. As a
result, a dishonest cloud provider cannot tamper with the potentially safety-critical

7.1. Contributions and Results 229

IoT devices managed on top of its infrastructure. Our evaluation of the overheads
introduced by D-CAM has shown that the processing, storage, and communication
costs of D-CAM are reasonable for the provided additional level of security. Fur-
thermore, to additionally protect privacy-relevant information potentially revealed
by configuration, authorization, and management messages, D-CAM can also be
used to realize the key management necessary for the confidentiality protection of
control messages.

To summarize, the results presented in the scope of this contribution support cloud
service providers and developers in protecting users’ privacy in the context of cloud
computing. With SCSlib, we realized support for service developers in incorporating
the functionality required to access protected IoT into their cloud services. Likewise,
with D-CAM, we enabled support for securely realizing federated IoT networks on
top of untrustworthy cloud infrastructure.

7.1.4 Decentralizing Individual Cloud Services

Finally, with our fourth contribution, we revisited the research question of how
users can preserve their privacy when interacting with cloud services. This time,
however, we consider a scenario where users distrust cloud providers to handle their
data appropriately and instead cooperate with each other to realize a decentralized
deployment model for certain types of cloud services. More specifically, we identified
that individual cloud services, e.g., calendar and contact synchronization, do not
necessarily require the enormous scalability offered by cloud computing. Hence, we
asked ourselves whether it is possible to shift such services from untrusted public
cloud infrastructure to infrastructure contributed by trusted individuals such as a
user’s family and close friends.

With PriverCloud, we presented a technical approach as an answer to this question.
PriverCloud deploys cloud services to a decentralized peer-to-peer network built over
idle resources on off-the-shelf devices in home networks. To ease the migration away
from public cloud infrastructure, PriverCloud offers support for cloud services orig-
inally developed for the popular AppScale or Google App Engine cloud platforms.
Our evaluation of PriverCloud indicated that even resource-constrained devices can
easily handle the required security measures. Likewise, we have shown that our
efficient approach for monitoring cloud services enables PriverCloud to recover from
device, network, and service failures within seconds.

The results obtained from our fourth contribution highlight that certain scenarios
allow for the replacement of traditional centralized cloud infrastructure with a sys-
tem built on top of cooperation between users. As a result, we were able to forgo any
assumptions on trust into cloud providers and instead rely on social trust. Further-
more, we have shown how trusted hardware can be used to further alleviate required
trust. While completely moving away from centralized cloud infrastructure consti-
tutes a quite radical approach, we consider this approach a valuable addition to our
portfolio of contributions to account for privacy in the cloud computing landscape,
especially for cloud services with extremely high privacy requirements or users who
are very skeptical with respect to privacy.

230 7. Conclusion

Techn. Complex.
& Miss. Transp.

Opaque
Legislation

Inherent
Centrality

Missing
Control

Raising Awareness
for Cloud Usage � �� �� ��
Data Handling
Requirements-aware
Cloud Infrastructure

� � �� �
Privacy-preserving
Cloud Services for
the IoT

�� � �� �
Decentralizing
Individual Cloud
Services

�� � � �

Table 7.1 The individual contributions presented in this dissertation comprehensively cover the
complete space spanned by the core problems of privacy in cloud computing. A contribution
addresses (�), partially addresses (��), or does not specifically address (�) a privacy problem.

7.2 Core Problems Revisited

The contributions presented in this dissertation are designed to overcome the four
core problems for privacy in cloud computing (cf. Section 1.1.3) and hence account
for privacy in the cloud computing landscape. In the following, we highlight how
these problems were addressed by the contributions of this dissertation. We sum-
marize the mapping of contributions to the core problems they address in Table 7.1.

Technical Complexity and Missing Transparency

The problem of technical complexity and missing transparency of cloud computing
mainly results from the abstraction of resources which hides the complexity of cloud
services as well as from the indirect use of resources due to subcontracting (cf.
Section 1.1.3). In this dissertation, we addressed this problem primarily by raising
awareness for cloud usage. To this end, we provide users with statistics on their
individual exposure to cloud services when using email services and mobile apps
on smartphones. Furthermore, we enable users to contextualize their cloud usage
through anonymous comparisons with their peer groups.

Consequently, our contribution creates transparency over the utilization of cloud-
based services and provides insights into the technical realization of cloud services,
e.g., which infrastructure a cloud service uses, information that has not been avail-
able to users so far. Partly, also other contributions of this dissertation address the
problem of technical complexity and missing transparency. By cryptographically
enforcing the access to IoT data and devices, our contribution to provide privacy-
preserving cloud services for the IoT gives users transparency over who has access
to their IoT data and can control their devices. Likewise, decentralizing individual
cloud services results in a conceptually less complex system, as the technology stack
is rather small, and provides transparency, as users have full knowledge of which
devices are used to provide their cloud services and who operates these devices.

7.2. Core Problems Revisited 231

Opaque Legislation

As a result of the technical complexity and missing transparency of cloud computing,
the jurisdiction that applies to users’ data is often unclear. As this jurisdiction
defines who, e.g., government agencies, can gain access to stored and processed data
under which conditions, users cannot control or protect against third party access
to their data (cf. Section 1.1.3). For users in the European Union, this situation
is likely to change as the new GDPR [GDPR16] is applicable whenever the user
whose data is being processed is based in the EU. Still, the abstraction of resources
in cloud computing makes it difficult even for these users to actually execute their
right to privacy. In the scope of this dissertation, we mainly addressed this problem
by proposing data handling requirements-aware cloud infrastructure. To this end, we
created a mechanism for users to specify their privacy requirements, most notably
with respect to the applicable legislation, before sending their data to the cloud
and enabled cloud providers to respect these requirements when assigning data to
storage nodes. To a lesser degree, also raising awareness for cloud usage tackles the
problem of opaque legislation since we can partly uncover the location to which data
was sent. Hence, users can gain information on the jurisdiction applicable to their
data and consequently, e.g., use a different mobile app or email service.

Inherent Centrality

The problem of inherent centrality of cloud computing is manifested by a few cloud
providers that jointly dominate the market. As a result, cloud services become a
valuable target for attackers and law enforcement agencies (cf. Section 1.1.3). Fur-
thermore, in a centralized market, users have only a very limited choice to select,
e.g., more privacy-friendly, cloud providers. We proposed decentralizing individual
cloud services as our main answer to this problem. With this contribution, we
enable users to eliminate any dependencies on traditional cloud providers and in-
stead rely on resources provided by trusted entities in a peer-to-peer manner to
break up the inherent centrality of the cloud computing landscape. Also our other
three contributions partly addressed the problem of inherent centrality. By raising
awareness for cloud usage, we also make users aware of the inherent centrality of
cloud services. Furthermore, the privacy policy language proposed as part of our
data handling requirements-aware cloud infrastructure can also be used to automati-
cally choose between different cloud providers based on privacy requirements, hence
easing comparability of cloud providers. Likewise, our security library proposed
for privacy-preserving cloud services for the IoT increases interoperability between
cloud services and thus eases the migration away from centralized cloud providers.

Missing Control

The previous three core problems for privacy in cloud computing culminate in users’
missing control over their private data after it is sent to the cloud. Any data that
leaves the control of the user can be unauthorizedly shared with third parties, uti-
lized against the user’s intention, or handled in violation of legal requirements. This

232 7. Conclusion

missing control is especially problematic, as the transfer of data out of the control
of a user often goes unnoticed (cf. Section 1.1.3). All contributions presented in
this dissertation address the problem of missing control. First, our data handling
requirements-aware cloud infrastructure allows users to specify their privacy require-
ments to stay in control over their data after it left their immediate influence. To
realize privacy-preserving cloud services for the IoT that provide users with control
over their data, we proposed to protect the access to IoT data and the control of
IoT devices using cryptographic measures. From a different perspective, when de-
centralizing individual cloud services, users can explicitly decide which other users
they trust with the operation of their cloud services, hence providing them with a
high level of control over their privacy. To a lesser extent, our proposed contribution
to raise awareness for cloud usage provides users with the necessary information to
regain control over their data, e.g., by uninstalling privacy-invasive mobile apps.

In summary, our contributions take different views on tackling the core problems
for privacy in cloud computing. While they certainly do not completely solve all
privacy challenges of the cloud computing paradigm, they provide important steps
forward towards accounting for privacy in cloud computing. This progress especially
manifests when combining the different contributions presented in this dissertation
and hence incorporating all the actors involved in delivering cloud services.

7.3 Impact of Our Work

The individual contributions of this dissertation have been published and presented
at scientific venues. As a result, the contributions that form this dissertation pro-
vided the motivation and basis for other research efforts. Furthermore, we partly
released the software underlying our contributions as open source software to ease
the reproducibility of our results and to provide a foundation for further research
endeavors. In the following, we summarize the resulting impact of our work so far.

7.3.1 Impact of Publications

Our motivation for realizing data handling requirements-aware cloud infrastruc-
ture [HGKW13, HHW13a], has inspired numerous research efforts. First, differ-
ent researchers [AEÖ+14, BGR+15] discuss policy languages to realize our pro-
posed data handling requirements-aware cloud stack. Following our problem state-
ment of supporting data handling requirements in cloud computing, Maenhaut et
al. [MMOT14,MMOT15,MMV+15,MMV+17] propose an abstraction layer to sup-
port custom data handling policies for each user, ultimately evolving into the concept
of a software defined storage system. Likewise, Pasquier and Powles [PP15] apply
our notion of data handling requirements to the concept of information flow control.
Furthermore, Ayache et al. [AEF15] suggest attaching a privacy policy to a set of
data to make policy handling more efficient. Singh et al. [SPB+16] note that meeting
our goal to account for data handling requirements becomes even more complex in
the context of the even more dynamic IoT.

7.3. Impact of Our Work 233

Different researchers follow our motivation for the relevance of realizing privacy-
preserving cloud services for the IoT [HHK+14, HHK+16], e.g., in the context of
healthcare and monitoring of elderly [Hos16,ARLT17,MJ17,MRAA17], smart homes
[YDAJ15, BJD16, COTC17], smart cities [BRM16, RBM16, WC16], and location
privacy [SCR+17]. From a more conceptual standpoint, other researchers extend
upon the concepts underlying our individual contributions [HHM+13, HHMW14,
HBHW14,HWM+17]. Singh et al. [SPB15] propose to extend access control with a
data-centric control mechanism for IoT data using information flow control. Like-
wise, Funke et al. [FDW+15] suggest extending our work to realize an end-to-end
privacy architecture for the IoT. Perra [Per15] adapts our trust point-based secu-
rity architecture to the context of protecting personal media content. Pacheco et
al. [PAS17] evolve our architecture to work without dedicated gateways and hence
target the challenge of preserving privacy when IoT devices directly communicate
with the cloud. From a different perspective, Kashef et al. [KYKH16] propose a
decision support tool for IoT service providers to choose between different cloud
providers, e.g., with respect to privacy requirements. Leveraging a decentralized
access control mechanism similar to our proposal, Ko et al. [KJK16, KJK17] pro-
vide the foundation for virtualizing IoT services. Liang et al. [LWBL17] specifically
deepen the study of the problem of conflicting commands in the cloud-based IoT,
while Khan and Salah [KS17] further develop our idea of a tamper-resistant message
log for securely managing the IoT.
Finally, based on our idea to decentralize individual cloud services by operating them
on infrastructure provided by a user’s family and close friends, Baig et al. [BFN16,
BFN18] propose to deploy cloud services in an existing community cloud where
everyone can contribute and consume computing resources.

7.3.2 Impact of Open Source Activities

To enable the reproducibility of our results as well as to lay the foundation for further
research efforts, we selectively released the software and data we used to verify the
feasibility of the approaches that form our contributions in this dissertation under
open source licenses. In the following, we briefly recap on these efforts and report
on the impact of these activities where relevant.
For the approaches underlying our contribution for raising awareness for cloud usage,
we released the source code, our compiled detection patterns for cloud services,
as well as anonymized and aggregated study results for MailAnalyzer under the
MIT license10. Likewise, we provide the source code of our CloudAnalyzer app and
the additional detection patterns for mobile cloud services under the GNU GPL
license (version 3)11. We expect that especially the patterns we compiled to detect
communication with cloud services are of relevance for other researchers as well as
practitioners from industry.
In the context of our contribution for realizing data handling requirements-aware
cloud infrastructure, we released the source code as well as a library binding of

10https://github.com/COMSYS/MailAnalyzer
11https://github.com/COMSYS/CloudAnalyzer

234 7. Conclusion

CPPL as open source under the Apache license (version 2)12. In the context of
the SSICLOPS project, CPPL has been integrated by researchers and practitioners
in a number of industry-driven use cases [HKP+18]: At the cloud infrastructure
layer, CPPL has been integrated with OpenStack to provide customers with control
over the management of resources and applied to realize policy-compliant setup
of network connections. With respect to the platform layer, CPPL was applied
to realize privacy policy-aware data management both for XRootD at CERN to
store data on high-energy particle collisions as well as for the in-memory database
Hyrise. Furthermore, the ISP Orange Polska is working on applying CPPL to make
the virtualization of their customers’ home-gateways policy-compliant. Finally, at
the software layer, F-Secure plans to extend its Security Cloud with policy-aware
analysis of customers’ files based on CPPL.

As a foundation for realizing privacy-preserving cloud services for the IoT, we re-
leased the source code of SCSlib under the open source MIT license13. Furthermore,
we created a documentation of the underlying protocol used for encoding IoT data
and our security measures [HHMW16]. We have been in contact with researchers
from Alexandria University (Egypt) and Concordia University (Canada) who are
currently working on applying SCSlib for their research. Lately, we started discus-
sions on adapting our trust point-based security architecture to support the devel-
opment of a user-controlled ecosystem for the sharing of personal data [MMZ+17].

7.4 Future Research Directions

During the work on this dissertation, we discovered a wide range of directions for
promising future research. We already discussed specific future research directions
that deepen our individual contributions in the respective chapters. In the follow-
ing, we discuss promising research directions that are not directly tied to a single
contribution and hence significantly extend the scope of this dissertation.

7.4.1 User Acceptance

The contributions presented in dissertation aim at providing technical approaches
to increase the level of privacy when using cloud services. However, to be success-
ful, such approaches eventually need to be adopted by users, hence requiring that
users accept the technical approaches and their implementations. For example, as
of now, we do not know whether an approach such as our proposed data handling
requirements-aware cloud stack (cf. Chapter 4) can be outright used by less techni-
cally proficient users. Based on a study of user acceptance, we could, for example,
derive the necessity to further abstract from the technical specification of our pri-
vacy policy language, e.g., by providing GUI support or even only a limited set of
predefined policies from privacy experts.

12https://github.com/COMSYS/cppl
13https://code.comsys.rwth-aachen.de/redmine/projects/scslib

7.4. Future Research Directions 235

From our perspective, studying user acceptance of technical systems that aim to
enhance privacy comes with three challenges: (i) temporal dependencies, where a
technical system needs to be built first before users’ interaction with this system
can be studied, (ii) strong influences of the user interface on the user experience
and hence acceptance of a technical system, a factor not a core focus of our work,
and (iii) the necessity to clearly communicate the technical properties and privacy
guarantees of a system to users, again not one of our essential targets. We hence did
not cover the user acceptance of our proposed approach within the context of this
dissertation. Still, we collaborated on several occasions with researchers from the
sociology department to perform initial steps into this direction [EHH+14,HHK+14,
HHK+16, HKH+16]. We refer to the publications of our collaborators [EHKR14,
KDZ18] for further insights into initial results regarding the user acceptance of our
contributions presented in Chapters 3 and 5. Still, further collaborative research
efforts are required to transform the technical results of this dissertation into systems
actually usable for private users.

7.4.2 Accountable Cloud Computing

Our contributions, especially those presented in Chapters 4 and 5, assume that
the different actors in the cloud computing landscape all have a genuine interest in
accounting for privacy. This assumption is often valid as cloud providers have to
adhere to legal regulatory frameworks, are afraid of undesired consequences such as
non-acceptance of services or damage to reputation, and see business opportunities
in accounting for privacy (cf. Section 1.1.2). Hence, our work in this dissertation
was mainly motivated by the goal to provide functional improvements over the sta-
tus quo with respect to accounting for privacy in the cloud computing landscape.
Still, private and especially corporate users might want to hold cloud providers ac-
countable for delivering privacy functionality as promised, referred to as accountable
cloud computing [Hae10]. Different technical approaches exist to tackle this chal-
lenge, and we briefly discuss the two most promising ones to turn the contributions
of this dissertation into accountable systems in the following.

First, hardware security functions such as ARM TrustZones, Intel software guard
extensions (SGX), or trusted platform modules (TPMs) found a root of trust on
hardware components. In the context of cloud computing, such approaches have
been used to realize, e.g., secure storage and processing of users’ confidential data in
secure execution environments [IKC09], trustworthy data analytics where both code
and data are kept private [SCF+15], as well as confidentiality and integrity for third
party coordination services [BWG+16]. Considering the contributions presented in
this dissertation, we already optionally leverage TPMs to increase trust in the devices
used to realize decentralized individual cloud services (cf. Chapter 6). For future
research directions, hardware security could be used to enhance our data handling
requirements-aware cloud stack (cf. Chapter 4) with accountability functionality.
As a result, users and auditors would be empowered to verify that cloud providers
correctly perform the evaluation of privacy policies (cf. Section 4.2.2) or that selected
storage nodes indeed possess the promised properties (cf. Section 4.3.2). Likewise, in

236 7. Conclusion

the context of privacy-preserving cloud services for the IoT (cf. Chapter 5), hardware
security functionality can be used to ensure that cloud services are effectively isolated
against each other and the host system (cf. Section 5.2.1.2). From a completely
different perspective, accountability mechanisms could also be applied to ensure the
integrity of measurements provided by users for the comparison of cloud usage (cf.
Section 3.4).

Besides anchoring accountability in trusted hardware components, also secure com-
putation as a purely software-based approach can be used to realize accountable
cloud computing. More specifically, secure two-party computation, which is the se-
cure computation framework of particular relevance in the context of cloud comput-
ing, enables two mutually distrusting parties to compute a joined functionality with-
out the need to reveal the respective private inputs to the other party [ZMHW15].
Theoretically, any computable function can be realized using secure two-party com-
putation, e.g., based on fully homomorphic encryption [DJ10]. In the context of
cloud computing, secure two-party computation has been applied, e.g., to encrypt
both data and programs before performing computations in an untrusted public
cloud [BNSS11], to realize data deduplication for encrypted data stored in the
cloud [NWZ12], to preserve privacy during biometric authentication [CEL+14], or
to perform privacy-preserving outsourced genetic disease testing [ZPH+17].

These examples show that secure computation is a valuable asset when the primary
goal is to protect the confidentiality of information during computation in an un-
trusted cloud. While we observe that there is still a long way to go for the general
feasibility of applying secure computation to arbitrary use cases [ZMHW15] and cer-
tain classes of cloud services even cannot be realized with cryptography alone [DJ10],
these approaches show that special use cases can be realized with sufficient efficiency.
Within the scope of this dissertation, we already applied secure computation to re-
alize privacy-preserving comparisons of cloud usage (cf. Section 3.4). Concerning
the other contributions presented in this dissertation, we consider it most promising
to enhance privacy-preserving cloud services for the IoT (cf. Chapter 5) with secure
computation such that cloud services no longer need access to users’ data in plain
text to realize their functionality. In fact, our flexible mechanism for encoding IoT
data and security mechanisms (cf. Section 5.2.2.3) already allows to encode data
encrypted for secure computations, e.g., when using homomorphic encryption.

7.4.3 Beyond Cloud Computing

While the concept of cloud computing matures, we observe an increasing trend of
shifting computation closer to the users. In edge computing, computation is pushed
to the edge of networks [SCZ+16,SD16], while fog computing goes one step further
and realizes computation on devices in the same local network [SW14,VR14]. The
core motivation for both deployment models is to decrease the amount of data sent to
and received from the cloud, reduce communication latency, and thus realize shorter
response times compared to cloud services in remote data centers. Intuitively, mov-
ing computation closer to the user, and thus her trusted domain, might help in
overcoming the privacy problems of cloud computing (cf. Section 1.1.3). However,

7.4. Future Research Directions 237

to a certain extent, these privacy problems persist: Edge and fog computing deploy-
ments are still technically complex and lack transparency while offering users little
control. Furthermore, edge and especially fog computing introduce additional pri-
vacy challenges. For example, the number of actors involved in delivering a service
can increase noticeably, especially in the case of fog computing where it is envisioned
to deploy computation also to devices of other, untrusted users [VR14].

While not specifically designed and evaluated for these evolving deployment do-
mains, the contributions presented in this dissertation—after further research efforts—
can prove beneficial to tackle privacy problems of edge and fog computing deploy-
ments as well. Also in the context of edge and fog computing, we consider it feasible
and promising to analyze network traffic as a foundation to raise users’ awareness
on their usage of edge and fog resources (cf. Chapter 3), hence lifting the fog of
missing transparency in these deployment domains. By adapting the concept of
data handling requirements-aware cloud infrastructure (cf. Chapter 4) to edge and
fog computing, users could be provided with more control over the realization and
placement of services that operate on their data. Our compact privacy policy lan-
guage (cf. Section 4.2) already affords for other deployment domains and hence
future research in this direction mainly needs to be concerned with the distinct
privacy requirements of users in these scenarios and how these can be mapped to
a technical system. Likewise, our contribution to realize privacy-preserving cloud
services for the IoT (cf. Chapter 5) presents a starting point to provide users with
control over the access to their data in edge and fog computing deployments (cf.
Section 5.2) as well as to enable the secure management of such deployments in a
decentralized manner (cf. Section 5.3). Furthermore and especially when moving
away from centralized cloud deployments, considering accountability, as discussed
above for cloud computing, becomes a prime candidate for future research.

7.4.4 Beyond Privacy

This dissertation deliberately focused on the challenge of accounting for the privacy
of users when interacting with cloud services. However, we observe an increasing
trend of companies outsourcing their own (and not only their users’) data as well as
business intelligence to the cloud, e.g., in the context of the Industrial IoT and cyber
manufacturing systems [JBM+17, GHW+19]. This trend is fueled by the vision of
Industry 4.0, the alleged fourth industrial revolution, where an increased amount of
data collection as well as cooperation and coordination of production steps across
individual factories or even companies is envisioned [LFK+14]. Hence, one promising
future research direction lies in the transition of our contributions from targeting the
privacy of users towards the more holistic problem space of corporate secrecy and
secure information sharing between corporations in Industry 4.0 [SWW15]. These
challenges naturally arise with increased data collection, outsourcing of data storage
and processing to the cloud, as well as cooperation and coordination across com-
panies. Notably, the concerns here are not restricted to the mere confidentiality
of collected data, but rather also involve, e.g., the interaction patterns of different
companies or machine learning models to optimize production processes.

238 7. Conclusion

We recently started our work to also account for these concerns, especially in the
context of cloud computing, and we are convinced that the contributions presented
in this dissertation provide a valuable starting point for these efforts. For example,
the trust point-based security architecture underlying our privacy-preserving cloud
services (cf. Section 5.2.2.2) could also be applied to protect production data.

Yet, to fully embrace the advantages promised by Industry 4.0, access control deci-
sions likely have to be taken dynamically and automatically, which we believe could
be realized based on accountability mechanisms such as trusted hardware or secure
computations as discussed above. Likewise, our compact privacy policy language
(cf. Section 4.2) could be employed in a decentralized system in which companies
automatically establish who should cooperate with whom under which conditions.
For example, an external supplier could provide access to the raw production data
of an individual component only under certain conditions. Finally, a more general
approach for anonymous comparisons (cf. Section 3.4.3) can provide the foundation
of anonymous performance benchmarking, e.g., enabling a company to compare its
production output against competitors utilizing the same machine model without
having to disclose own confidential production data.

7.5 Final Remarks

This dissertation proposed different technical approaches to account for privacy in
the cloud computing landscape with the motivation to enable more private and
corporate users to benefit from the advantages of cloud computing without the
often inherent need to sacrifice privacy. To this end, we specifically and deliberately
focused on the advantages offered by cooperation between the different actors in the
cloud computing landscape. The results derived during the course of this dissertation
highlight that it is indeed promising and feasible to leverage cooperation to derive
technical systems that improve users’ privacy in the cloud computing landscape.
This aspect is further supported by the initial adoption and further evolution of the
ideas and approaches presented in this dissertation by other researchers as well as
practitioners from industry.

However, to fully address and solve the pressing problem of privacy in cloud comput-
ing, much larger efforts are required to comprehensively integrate different and often
conflicting views such as legislation, user acceptance, and business perspectives with
technical approaches such as ours. With the contributions presented in this disser-
tation, we strongly believe to provide valuable technical foundations to eventually
achieve this goal and relieve users of having to choose between their privacy and the
benefits of cloud computing. Finally, we hope that our contributions serve as an
inspiration for future research in the area of cloud computing privacy and beyond.

A
Appendix

A.1 Full Example of a CPPL Policy

In Section 4.2.2, we presented the compression of a policy together with a reasoning
of our design decisions. To fully embrace the inner workings of CPPL, we now
present a detailed example for the specification and compression of a privacy policy
as well as a description of its evaluation at a cloud node.

Specifying a Policy with CPPL

Listing A.1 shows the textual representation of the policy which we compress with
the help of the domain parameters specification (CPPL dialect) given in Listing A.2.
The policy is an extended version of the policy discussed in Section 4.2.2.1 (cf. Listing
4.1) which, in the extended version, additionally incorporates a redundant variable
("CompanyA") as well as a redundant relation (encryption = true) to showcase the
corresponding compression mechanisms.

Compressing a Policy with CPPL

The resulting compressed policy is depicted in Listing A.3. First, the policy header
encodes the version (23 in our example) used by this policy and hence the applicable
CPPL dialect. The formula stack encodes the boolean operands OR (10) and AND
(11). Furthermore, it refers to relations on the relation stack: either next relation
(00) or to a relation at a specific position on this stack (011<position>). The position
is specified as index of the relation on the relation stack starting with index 0 for
the first relation. Thereby, the number of bits to encode the position of a variable is
fixed and can be derived from the domain parameters (8 bits in our example). The
end of the formula stack is signaled by the bit sequence 010.

240 A. Appendix

1 provider != " CompanyA "
2 & (tenant != " CompanyA " | encryption = true)
3 & log_access = true
4 & deleteAfter (1735693210)
5 & backupHistory ("1M")
6 & replication >= 2
7 & (location = "DE" | (location = "EU" & encryption = true))

Listing A.1 Extended version of the previously used CPPL policy (Listing 4.1). The extended
version features a redundant variable and a redundant relation to showcase their processing
during compression.

1 {
2 " version ": 23 ,
3 " relationPositionLen ": 8,
4 " variablePositionLen ": 8,
5 " variables ": [
6 { "name ": " provider ", "type ": " string " },
7 { "name ": " tenant ", "type ": " string " },
8 { "name ": " log_access ", "type ": " boolean " },
9 { "name ": " deleteAfter ", "type ": " function ", " parameters ":

10 ["int32"] },
11 { "name ": " backupHistory ", "type ": " function ", " parameters ":
12 [" string "] },
13 { "name ": " location ", "type ": " string ", " values ":
14 ["DE", "FR", "US", "GB", "NL", "EU"] },
15 { "name ": " encryption ", "type ": " boolean " },
16 { "name ": " replication ", "type ": "int32" }
17]
18 }

Listing A.2 Underlying domain parameters specification (CPPL dialect) in JSON format.

Following the formula stack, the relation stack encodes the relations = (000), �=
(001), < (010), ≤ (011), > (100), ≥ (101), = True (110), = False (111). Thereby,
it refers to one or two variables (depending on the relation type) on the variable
stack: either to the next variable (0) or to a variable at a specific position on this
stack (1<position>). Again, the position is given as the index of the corresponding
variable on the variable stack starting with index 0 for the first variable. The length
of the position field is specified by the domain parameters (here we use 8 bits which
allows for referencing variables with index up to 255—far more than required for the
real-world policies in Section 4.2.3.2)

Finally, the variable stack encodes booleans (0000), variable identifiers that refer
to variables specified in the domain parameters (0001), strings (0010), enumerated
variables (0011), functions (0100), int64 (0101), int32 (0110), int16 (0111), int8
(1000), uint32 (1001), uint16 (1010), uint8 (1011), and double values (1100). Each
of these type identifiers is followed by the actual value of the variable whose length
is determined by the type, e.g., fixed to 8 bits for uint8 or terminated by a special
symbol, e.g., for null-byte terminated strings.

A.1. Full Example of a CPPL Policy 241

1 Policy Header
2 0000000000010111 version (23)
3 Formula Stack
4 11 AND
5 00 Next Relation
6 11 AND
7 10 OR
8 00 Next Relation
9 11 AND

10 011 00000001 Reference to Relation at index 1
11 00 Next Relation
12 11 AND
13 00 Next Relation
14 11 AND
15 00 Next Relation
16 11 AND
17 00 Next Relation
18 11 AND
19 00 Next Relation
20 10 OR
21 00 Next Relation
22 00 Next Relation
23 010 End of formula stack
24 Relation Stack
25 001 0 0 �=, Next Var , Next Var
26 110 0 =True , Next Var
27 001 0 1 00000001 �=, Next Var , Reference to Variable at index 1
28 110 0 =True , Next Var
29 110 0 =True , Next Var
30 110 0 =True , Next Var
31 000 0 0 =, Next Var , Next Var
32 000 0 0 =, Next Var , Next Var
33 101 0 0 ≥, Next Var , Next Var
34 Variable Stack
35 0001 001 ID 1 (tenant)
36 0010 string
37 0100001101101111011011010111000001100001011011100111100101000001
38 00000000 " CompanyA "
39 0001 110 ID 6 (encryption)
40 0001 000 ID 0 (provider)
41 0001 010 ID 2 (log_access)
42 0100 011 Function , ID 3 (deleteAfter)
43 01100111011101001001001110011010
44 int32 (value: 1735693210)
45 0100 100 Function , ID 4 (backupHistory)
46 001100010100110100000000
47 string "1M"
48 0001 101 ID 5 (location)
49 0011 101 enum value 5 ("EU")
50 0001 101 ID 5 (location)
51 0011 000 enum value 0 ("DE")
52 0001 111 ID 7 (replication)
53 1011 00000010 uint8 (value: 2)

Listing A.3 The resulting compressed policy representation is shown as a sequence of bits
complemented by descriptive text for their respective meanings.

242 A. Appendix

Figure A.1 Decompression of a policy during evaluation at a cloud node. First, the algorithm
iterates over the formula stack to find the beginning of the relations, thereby pushing elements
of the formula stack onto an interpretation stack (left) which yields the policy in reverse polish
notation. In a second step, the algorithm evaluates the policy based on the reverse polish
notation, i.e., it resolves and evaluates relations and applies the boolean operations to the
corresponding results.

This encoding enables us to reduce the 180 byte textual encoding to a 42 byte repre-
sentation of the policy. By doing so, we lay the foundation for efficient transmission
and storage of data annotations.

Interpreting a Policy with CPPL

When a cloud node receives a data item, e.g., to store or process it, the node first
must check if the desired action is possible given the requirements specified by the
policy. Compressed data typically requires decompression before its processing.
However, with CPPL we are able to omit a separate decompression step and instead
efficiently integrate decompression into the interpretation of the policy (cf. Section
4.2.2.3). In the following, we describe the interpretation of CPPL policies in more
detail based on our example.

At the beginning of the compressed policy, the header enables the matching algo-
rithm to determine the domain parameters specification (CPPL dialect) that applies

A.2. Latencies Between Cloud Nodes 243

to this policy. Following this, the formula stack encodes the boolean interconnec-
tion of relations in polish notation. During the matching process, the algorithm
iterates over the formula stack until its end to find the beginning of the relation
stack. Thereby, it sequentially pushes the content of the formula stack onto an in-
terpretation stack. For our example, we depict this stack in Figure A.1 (left). When
reaching the end of the formula stack, the interpretation stack contains the policy
in reverse polish notation. This order is used for the actual interpretation of the
policy.

To this end, the algorithm sequentially takes the next element from the top of the
interpretation stack. This element may be a reference to a relation or a boolean
operand. The typical case for relations is a reference to the next relation on the
relation stack. In this case, the algorithm locates the next relation on the relation
stack, resolves corresponding variables, interprets the relation, and stores the truth
value. Here, values for variable identifiers are retrieved from the node parameters
that define the properties of this cloud node, e.g., its location. In case of a reference
to a specific relation (as identified by a relation position), we know that this rela-
tion has already been evaluated and the truth value can be reused (cf. reference to
Relation #1 in Figure A.1).

When retrieving a boolean operand from the interpretation stack, the algorithm
can directly apply it as the reverse polish notation ensures that the corresponding
relations already have been interpreted. Furthermore, reverse polish notation en-
sures that the last element of the interpretation stack is a boolean operand whose
application yields the final result of the interpretation process.

A.2 Latencies Between Cloud Nodes

As foundation for our evaluation of the applicability of PRADA (cf. Section 4.3.3.4),
our cloud storage system that realizes compliance with DHRs, we measured the
latency between different nodes of the Microsoft Azure Cloud using hping3 [San06],
a command-line oriented network testing tool. More specifically, we measured the
pair-wise RTTs between nodes in the following regions of the Microsoft Azure Cloud
[Mic16b]: asia-east, asia-southeast, canada-east, eu-north, eu-west, japan-
east, us-central, us-east, us-southcentral, and us-west. We summarize the
measured pair-wise RTTs between the ten nodes (one in each region) in Table A.1.

We observe that the RTT between different regions within North America lies in the
range of 25.1 ms (us-southcentral → us-central) and 78.4 ms (us-west → canada-
east). In contrast, the RTT for communication between different continents ranges
from 179.0 ms (asia-southeast → eu-west) to 286.2 ms (asia-east → eu-west)
between Asia and Europe, from 108.4 ms (japan-east → us-west) to 244.6 ms (asia-
southeast → canada-east) between Asia and North America, and from 85.2 ms
(eu-west → us-east) to 145.3 ms (us-west → eu-west) between Europe and North
America. These results are in line with the results reported by Sanghrajka et
al. [SMS11] for measurements of inter-region RTTs for Amazon Web Services’ cloud
offer performed in 2011.

244 A. Appendix

us-east us-central us-west canada-east us-southcentral

us-east — 35.1 ms 66.7 ms 38.1 ms 31.9 ms
us-central 35.0 ms — 41.1 ms 41.5 ms 25.8 ms
us-west 66.1 ms 42.2 ms — 78.4 ms 35.1 ms
canada-east 38.3 ms 41.0 ms 78.0 ms — 63.8 ms
us-southcentral 31.8 ms 25.1 ms 35.4 ms 62.8 ms —
eu-west 85.2 ms 117.0 ms 145.0 ms 111.0 ms 113.2 ms
asia-east 203.8 ms 183.3 ms 157.9 ms 220.9 ms 174.2 ms
asia-southeast 220.9 ms 207.9 ms 175.8 ms 244.6 ms 191.4 ms
japan-east 153.7 ms 142.3 ms 108.4 ms 179.7 ms 124.7 ms
eu-north 85.9 ms 104.5 ms 141.6 ms 89.6 ms 121.2 ms

eu-west asia-east asia-southeast japan-east eu-north

us-east 85.3 ms 213.6 ms 241.1 ms 179.5 ms 86.3 ms
us-central 116.6 ms 182.9 ms 208.6 ms 143.4 ms 105.1 ms
us-west 145.3 ms 159.4 ms 182.8 ms 115.6 ms 142.4 ms
canada-east 109.9 ms 220.6 ms 244.2 ms 178.8 ms 90.0 ms
us-southcentral 114.3 ms 175.0 ms 192.7 ms 124.7 ms 120.5 ms
eu-west — 285.6 ms 179.7 ms 235.9 ms 24.5 ms
asia-east 286.2 ms — 37.8 ms 51.9 ms 284.4 ms
asia-southeast 179.0 ms 38.5 ms — 70.3 ms 180.0 ms
japan-east 236.0 ms 53.4 ms 70.8 ms — 243.7 ms
eu-north 24.3 ms 283.7 ms 181.2 ms 243.7 ms —

Table A.1 Round-trip times between cloud nodes in the different regions of Microsoft Azure.

Abbreviations and Acronyms

AES Advanced Encryption Standard

API application programming interface

AWS Amazon Web Services

BGP border gateway protocol

CA Certificate Authority

CBC cipher block chaining

CCM counter with CBC-MAC

CDN content delivery network

CPS Cyber-physical Systems

CPU central processing unit

CRUD create, read, update, and delete

DHR data handling requirement

DHT distributed hash table

DNS domain name system

DoS denial of service

DRM digital rights management

ECDSA Elliptic Curve Digital Signature Algorithm

EU European Union

FIFO first in first out

GDPR General Data Protection Regulation

GPS Global Positioning System

GUI graphical user interface

246 Abbreviations and Acronyms

HIPAA Health Insurance Portability and Accountability Act

HMAC keyed-hash message authentication code

IaaS Infrastructure as a Service

IETF Internet Engineering Task Force

IMEI International Mobile Equipment Identity

IoT Internet of Things

IP Internet Protocol

ISP internet service provider

JSON JavaScript Object Notation

JWE JSON Web Encryption

JWK JSON Web Key

JWS JSON Web Signature

LRU least recently used

LXC Linux containers

MAC message authentication code

MTU maximum transmission unit

MX mail exchange

NAS network-attached storage

NAT network address translation

NIST National Institute of Standards and Technology

PaaS Platform as a Service

PII personally identifiable information

QCT query completion time

QoS quality of service

RSA Rivest-Shamir-Adleman cryptosystem

RTT round-trip time

SaaS Software as a Service

SDK software development kit

247

SDN software-defined networking

SGX software guard extensions

SHA Secure Hash Algorithm

SLA service level agreement

SME small and medium-sized enterprise

SMTP Simple Mail Transfer Protocol

SNI server name indication

SSH secure shell

SVM support vector machine

TCP Transmission Control Protocol

TLS transport layer security

TPM trusted platform module

VM virtual machine

VPN virtual private network

XML Extensible Markup Language

248 Abbreviations and Acronyms

Bibliography

[AB13] Veronika Abramova and Jorge Bernardino. NoSQL Databases: Mon-
goDB vs Cassandra. In Proceedings of the International C* Conference
on Computer Science and Software Engineering (C3S2E), pages 14–22.
ACM, 2013.

[ABF+04] Rakesh Agrawal, Roberto Bayardo, Christos Faloutsos, Jerry Kiernan,
Ralf Rantzau, and Ramakrishnan Srikant. Auditing Compliance with
a Hippocratic Database. In Proceedings of the Thirtieth International
Conference on Very Large Data Bases (VLDB), pages 516–527. VLDB
Endowment, 2004.

[ABP09] Muhammad Ali, Laurent Bussard, and Ulrich Pinsdorf. Obligation
Language and Framework to Enable Privacy-Aware SOA. In Proceed-
ings of the 4th International Workshop on Data Privacy Management
(DPM), pages 18–32. Springer, 2009.

[Acc10] Rafael Accorsi. BBox: A Distributed Secure Log Architecture. In Pro-
ceedings of the 7th European Workshop on Public Key Infrastructures,
Services and Applications (EuroPKI), pages 109–124. Springer, 2010.

[ADBK10] Armen Aghasaryan, Marie-Pascale Dupont, Stéphane Betgé-Brezetz,
and Guy-Bertrand Kamga. Privacy Data Envelops for Moving Privacy-
sensitive Data. In Proceedings of the W3C Workshop on Privacy and
Data Usage Control. World Wide Web Consortium, 2010.

[ADD+14] N. Asokan, Lucas Davi, Alexandra Dmitrienko, Stephan Heuser, Kari
Kostiainen, Elena Reshetova, and Ahmad-Reza Sadeghi. Mobile Plat-
form Security, volume 4(3) of Synthesis Lectures on Information Secu-
rity, Privacy, and Trust. Morgan & Claypool, 2014.

[Ade16] Adestra. 2016 Adestra Consumer Adoption & Usage Study, 2016.

[AEF15] Meryeme Ayache, Mohammed Erradi, and Bernd Freisleben. Access
Control Policies Enforcement in a Cloud Environment: Openstack. In
Proceedings of the 2015 11th International Conference on Information
Assurance and Security (IAS), pages 26–31. IEEE, 2015.

250 Bibliography

[AEÖ+14] Monir Azraoui, Kaoutar Elkhiyaoui, Melek Önen, Karin Bernsmed,
Anderson Santana Oliveira, and Jakub Sendor. A-PPL: An Account-
ability Policy Language. In Proceedings of the 9th International Work-
shop on Data Privacy Management (DPM), pages 319–326. Springer,
2014.

[AFG+09] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy H. Katz, Andrew Konwinski, Gunho Lee, David A. Patterson,
Ariel Rabkin, Ion Stoica, and Matei Zaharia. Above the Clouds: A
Berkeley View of Cloud Computing. Technical Report UCB/EECS-
2009-28, EECS Department, University of California, Berkeley, 2009.

[AFG+10] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. A View of Cloud Comput-
ing. Communications of the ACM, 53(4):50–58, 2010.

[AGM10] Mohamed Al Morsy, John Grundy, and Ingo Müller. An Analysis of
the Cloud Computing Security Problem. In Proceedings of the APSEC
2010 Cloud Workshop, 2010.

[AHA+14] Ismet Aktaş, Martin Henze, Muhammad Hamad Alizai, Kevin Möller-
ing, and Klaus Wehrle. Graph-based Redundancy Removal Approach
for Multiple Cross-Layer Interactions. In Proceedings of the 2014 Sixth
International Conference on Communication Systems and Networks
(COMSNETS), pages 1–8. IEEE, 2014.

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabit. The Internet of
Things: A survey. Computer Networks, 54(15):2787–2805, 2010.

[AKK12] Jose M. Alcaraz Calero, Benjamin König, and Johannes Kirschnick.
Cross-Layer Monitoring in Cloud Computing. In Habib F. Rashvand
and Yousef S. Kavian, editors, Using Cross-Layer Techniques for Com-
munication Systems, pages 328–348. IGI Global, 2012.

[AKSX02] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong
Xu. Hippocratic Databases. In Proceedings of the 28th International
Conference on Very Large Data Bases (VLDB), pages 143–154. VLDB
Endowment, 2002.

[AL07] Yonatan Aumann and Yehuda Lindell. Security Against Covert Ad-
versaries: Efficient Protocols for Realistic Adversaries. In Proceedings
of the 4th Theory of Cryptography Conference (TCC), pages 137–156.
Springer, 2007.

[Ald15] Fritz Alder. Distributed Storage for Secure Peer-to-Peer Clouds. Bach-
elor’s thesis, RWTH Aachen University, April 2015.

[Ale16] Alexa. Actionable Analytics for the Web. http://www.alexa.com/,
2016. [Online, accessed 2016-07-06].

Bibliography 251

[And18a] Android. Intent – Android Developer. https://developer.android.
com/reference/android/content/Intent, 2018. [Online, accessed
2018-07-01].

[And18b] Android. UI/Application Exerciser Monkey – Android Studio. https:
//developer.android.com/studio/test/monkey, 2018. [Online, ac-
cessed 2018-07-01].

[ANSF16] Muneeb Ali, Jude Nelson, Ryan Shea, and Michael J. Freedman. Block-
stack: A Global Naming and Storage System Secured by Blockchains.
In Proceedings of the 2016 USENIX Annual Technical Conference
(USENIX ATC), pages 181–194. USENIX, 2016.

[Apa18a] Apache Software Foundation. Apache Cassandra. https://
cassandra.apache.org/, 2018. [Online, accessed 2018-07-01].

[Apa18b] Apache Software Foundation. Apache James – Java Apache Mail En-
terprise Server. http://james.apache.org/, 2018. [Online, accessed
2018-07-01].

[Apa18c] Apache Software Foundation. Cassandra Query Language (CQL)
v3.3.1. https://cassandra.apache.org/doc/old/CQL-2.2.html,
2018. [Online, accessed 2018-07-01].

[App15] App Annie. App Annie IndexTM: Market Q2 2015, 2015.

[App17a] AppBrain. Ad networks – Android library statistics. https://www.
appbrain.com/stats/libraries/ad, 2017. [Online, accessed 2017-
02-15].

[App17b] AppBrain. Android analytics libraries. https://www.appbrain.com/
stats/libraries/tag/analytics/android-analytics-libraries,
2017. [Online, accessed 2017-02-15].

[App17c] AppBrain. Android crash reporting libraries. https:
//www.appbrain.com/stats/libraries/tag/crash-reporting/
android-crash-reporting-libraries, 2017. [Online, accessed
2017-02-15].

[App17d] AppBrain. Social SDKs – Android library statistics. https://www.
appbrain.com/stats/libraries/social, 2017. [Online, accessed
2017-02-15].

[App17e] AppBrain. Video ads. https://www.appbrain.com/stats/
libraries/tag/video-ads/video-ads, 2017. [Online, accessed 2017-
02-15].

[App18a] Apple Home. https://www.apple.com/ios/home/, 2018. [Online, ac-
cessed 2018-07-01].

252 Bibliography

[App18b] AppScale. https://www.appscale.com, 2018. [Online, accessed 2018-
07-01].

[ARF+14] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. FlowDroid: Precise Context, Flow, Field, Object-sensitive
and Lifecycle-aware Taint Analysis for Android Apps. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), pages 259–269. ACM, 2014.

[ARLT17] Iman Azimi, Amir M. Rahmani, Pasi Liljeberg, and Hannu Tenhunen.
Internet of things for remote elderly monitoring: a study from user-
centered perspective. Journal of Ambient Intelligence and Humanized
Computing, 8(2):273–289, 2017.

[ASS+12] Mustafa Y. Arslan, Indrajeet Singh, Shailendra Singh, Harsha V. Mad-
hyastha, Karthikeyan Sundaresan, and Srikanth V. Krishnamurthy.
Computing While Charging: Building a Distributed Computing In-
frastructure Using Smartphones. In Proceedings of the 8th Interna-
tional Conference on Emerging Networking Experiments and Technolo-
gies (CoNEXT), pages 193–204. ACM, 2012.

[AWS17] Amazon Web Services (AWS). Amazon Web Services General Refer-
ence Version 1.0, 2017.

[AWS18a] Amazon Web Services (AWS). Amazon EC2 Instance Types. https:
//aws.amazon.com/ec2/instance-types/, 2018. [Online, accessed
2018-07-01].

[AWS18b] Amazon Web Services (AWS). Amazon EC2 Pricing. https://aws.
amazon.com/ec2/pricing/on-demand/, 2018. [Online, accessed 2018-
06-22].

[AWS18c] Amazon Web Services (AWS). AWS GovCloud (US). https://aws.
amazon.com/de/govcloud-us/, 2018. [Online, accessed 2018-07-01].

[Bar08] Jeff Barr. Animoto – Scaling Through Viral Growth. https://aws.
amazon.com/de/blogs/aws/animoto-scali/, 2008. [Online, accessed
2018-07-01].

[Bar15] Elaine Barker. Recommendation for Key Management – Part 1: Gen-
eral (Revision 4). NIST Special Publication 800-57, National Institute
of Standards and Technology, 2015.

[BBB+13] Bart Braem, Chris Blondia, Christoph Barz, Henning Rogge, Felix Fre-
itag, Leandro Navarro, Joseph Bonicioli, Stavros Papathanasiou, Pau
Escrich, Roger Baig Viñas, Aaron L. Kaplan, Axel Neumann, Ivan
Vilata i Balaguer, Blaine Tatum, and Malcolm Matson. A Case for
Research with and on Community Networks. ACM SIGCOMM Com-
puter Communication Review, 43(3):68–73, 2013.

Bibliography 253

[BBGR03] Eberhard Becker, Willms Buhse, Dirk Günnewig, and Niels Rump,
editors. Digital Rights Management: Technological, Economic, and
Legal and Political Aspects. Springer, 2003.

[BDPP16] Alessio Botta, Walter de Donato, Valerio Persico, and Antonio Pescapé.
Integration of Cloud computing and Internet of Things: A survey.
Future Generation Computer Systems, 56:684–700, 2016.

[BE13] Elie Bursztein and Vijay Eranti. Internet-wide efforts to fight email
phishing are working. https://security.googleblog.com/2013/12/
internet-wide-efforts-to-fight-email.html, 2013. [Online, ac-
cessed 2018-07-01].

[Beh11] Akhil Behl. Emerging Security Challenges in Cloud Computing: An
insight to cloud security challenges and their mitigation. In Proceed-
ings of the 2011 World Congress on Information and Communication
Technologies (WICT), pages 217–222. IEEE, 2011.

[BEP+14] Jean Bacon, David Eyers, Thomas F. J.-M. Pasquier, Jatinder Singh,
Ioannis Papagiannis, and Peter Pietzuch. Information Flow Control for
Secure Cloud Computing. IEEE Transactions on Network and Service
Management, 11(1):76–89, 2014.

[Ber09] Daniel J. Bernstein. Cryptography in NaCl. Technical report, Univer-
sity of Illinois at Chicago, 2009.

[Ber14] Sebastian Bereda. Flexible Configuration and Service Abstraction for
Encrypted Sensor Data in the Cloud. Bachelor’s thesis, RWTH Aachen
University, March 2014.

[BFN16] Roger Baig, Felix Freitag, and Leandro Navarro. Fostering Collabo-
rative Edge Service Provision in Community Clouds with Docker. In
Proceedings of the 2016 IEEE International Conference on Computer
and Information Technology (CIT), pages 560–567. IEEE, 2016.

[BFN18] Roger Baig, Felix Freitag, and Leandro Navarro. Cloudy in guifi.net:
Establishing and sustaining a community cloud as open commons. Fu-
ture Generation Computer Systems, 87:868–887, 2018.

[BGL+17] Sean Brooks, Michael Garcia, Naomi Lefkovitz, Suzanne Lightman,
and Ellen Nadeau. An Introduction to Privacy Engineering and Risk
Management in Federal Systems. NIST Internal Report 8062, National
Institute of Standards and Technology, 2017.

[BGR+15] Walid Benghabrit, Hervé Grall, Jean-Claude Royer, Mohamed Sellami,
Monir Azraoui, Kaoutar Elkhiyaoui, Melek Önen, Anderson Santana
De Oliveira, and Karin Bernsmed. From Regulatory Obligations to En-
forceable Accountability Policies in the Cloud. In International Con-
ference on Cloud Computing and Services Science (CLOSER), pages
134–150. Springer, 2015.

254 Bibliography

[BH13] Carsten Bormann and Paul E. Hoffman. Concise Binary Object Repre-
sentation (CBOR). Request for Comments 7049, Internet Engineering
Task Force, 2013.

[BHJ+14] Ravi Bhoraskar, Seungyeop Han, Jinseong Jeon, Tanzirul Azim, Shuo
Chen, Jaeyeon Jung, Suman Nath, Rui Wang, and David Wetherall.
Brahmastra: Driving Apps to Test the Security of Third-Party Compo-
nents. In Proceedings of the 23rd USENIX Security Symposium, pages
1021–1036. USENIX, 2014.

[BJD16] Joseph Bugeja, Andreas Jacobsson, and Paul Davidsson. On Privacy
and Security Challenges in Smart Connected Homes. In Proceedings
of the 2016 European Intelligence and Security Informatics Conference
(EISIC), pages 172–175. IEEE, 2016.

[BKDG13] Stephane Betgé-Brezetz, Guy-Bertrand Kamga, Marie-Pascale
Dupont, and Aoues Guesmi. End-to-End Privacy Policy Enforcement
in Cloud Infrastructure. In Proceedings of the 2013 IEEE 2nd Inter-
national Conference on Cloud Networking (CloudNet), pages 25–32.
IEEE, 2013.

[BKTM11] David Bermbach, Markus Klems, Stefan Tai, and Michael Men-
zel. MetaStorage: A Federated Cloud Storage System to Manage
Consistency-Latency Tradeoffs. In Proceedings of the 2011 IEEE In-
ternational Conference on Cloud Computing (CLOUD), pages 452–459.
IEEE, 2011.

[BL07] Kari Barlow and Jenny Lane. Like Technology from an Advanced Alien
Culture: Google Apps for Education at ASU. In Proceedings of the 35th
Annual ACM SIGUCCS Fall Conference, pages 8–10. ACM, 2007.

[BLS+09] David Bernstein, Erik Ludvigson, Krishna Sankar, Steve Diamond,
and Monique Morrow. Blueprint for the Intercloud – Protocols and
Formats for Cloud Computing Interoperability. In Proceedings of the
Fourth International Conference on Internet and Web Applications and
Services (ICIW), pages 328–336. IEEE, 2009.

[BMB10] Moritz Y. Becker, Alexander Malkis, and Laurent Bussard. A Practical
Generic Privacy Language. In Proceedings of the 6th International
Conference on Information Systems Security (ICISS), pages 125–139.
Springer, 2010.

[BMM+12] Ignacio N. Bermudez, Marco Mellia, Maurizio M. Munafò, Ram Ker-
alapura, and Antonio Nucci. DNS to the Rescue: Discerning Content
and Services in a Tangled Web. In Proceedings of the 2012 Internet
Measurement Conference (IMC), pages 413–426. ACM, 2012.

[BMT12] Ozalp Babaoglu, Moreno Marzolla, and Michele Tamburini. Design
and Implementation of a P2P Cloud System. In Proceedings of the

Bibliography 255

27th Annual ACM Symposium on Applied Computing (SAC), pages
412–417. ACM, 2012.

[BNP10] Laurent Bussard, Gregory Neven, and Franz-Stefan Preiss. Down-
stream Usage Control. In Proceedings of the 2010 IEEE International
Symposium on Policies for Distributed Systems and Networks (POL-
ICY), pages 22–29. IEEE, 2010.

[BNSS11] Sven Bugiel, Stefan Nürnberger, Ahmad-Reza Sadeghi, and Thomas
Schneider. Twin Clouds: Secure Cloud Computing with Low Latency.
In Proceedings of the 12th IFIP TC 6/TC 11 International Confer-
ence on Communications and Multimedia Security (CMS), pages 32–
44. Springer, 2011.

[BOT13] Joshua W. S. Brown, Olga Ohrimenko, and Roberto Tamassia. Haze:
Privacy-preserving Real-time Traffic Statistics. In Proceedings of the
21st ACM SIGSPATIAL International Conference on Advances in Ge-
ographic Information Systems (SIGSPATIAL), pages 540–543. ACM,
2013.

[Box18] Boxcryptor – Encryption software to secure cloud files. https://www.
boxcryptor.com/, 2018. [Online, accessed 2018-07-01].

[Boy17] Andrew Boyd. Could your Fitbit data be used to deny you health insur-
ance? http://theconversation.com/could-your-fitbit-data-
be-used-to-deny-you-health-insurance-72565, 2017. [Online, ac-
cessed 2018-07-01].

[BPW13] Theodore Book, Adam Pridgen, and Dan S. Wallach. Longitudi-
nal Analysis of Android Ad Library Permissions. arXiv preprint
arXiv:1303.0857 [cs.CR], 2013.

[BRAY17] Justin Brookman, Phoebe Rouge, Aaron Alva, and Christina Yeung.
Cross-Device Tracking: Measurement and Disclosures. Proceedings on
Privacy Enhancing Technologies (PoPETS), 2017(2):133–148, 2017.

[BRC10] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N. Calheiros. Inter-
Cloud: Utility-Oriented Federation of Cloud Computing Environments
for Scaling of Application Services. In Proceedings of the 10th Inter-
national Conference on Algorithms and Architectures for Parallel Pro-
cessing (ICA3PP), pages 13–31. Springer, 2010.

[BRM16] July Katherine Díaz Barriga, Christian David Gómez Romero, and
José Ignacio Rodríguez Molano. Proposal of a standard architecture of
IoT for Smart Cities. In Proceedings of the 5th International Workshop
on Learning Technology for Education in Cloud (LTEC), pages 77–89.
Springer, 2016.

256 Bibliography

[BSPW17] Anne Bowser, Katie Shilton, Jennifer Preece, and Elizabeth Warrick.
Accounting for Privacy in Citizen Science: Ethical Research in a Con-
text of Openness. In Proceedings of the 2017 ACM Conference on Com-
puter Supported Cooperative Work and Social Computing (CSCW),
pages 2124–2136. ACM, 2017.

[BTMM13] Ignacio Bermudez, Stefano Traverso, Marco Mellia, and Maurizio Mu-
nafò. Exploring the Cloud from Passive Measurements: the Amazon
AWS Case. In Proceedings of the 2013 IEEE Conference on Computer
Communications (INFOCOM), pages 230–234. IEEE, 2013.

[Bug18] Bug Labs, Inc. dweet.io – Share your thing like it ain’t no thang.
https://dweet.io/, 2018. [Online, accessed 2018-07-01].

[BW07] Dan Boneh and Brent Waters. Conjunctive, Subset, and Range Queries
on Encrypted Data. In Proceedings of the 4th Theory of Cryptography
Conference (TCC), pages 535–554. Springer, 2007.

[BWG+16] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt,
Matthias Lorenz, Christof Fetzer, Peter Pietzuch, and Rüdiger Kapitza.
SecureKeeper: Confidential ZooKeeper using Intel SGX. In Proceed-
ings of the 17th International Middleware Conference (Middleware),
pages 14:1–14:13. ACM, 2016.

[BWHT12] Payam Barnaghi, Wei Wang, Cory Henson, and Kerry Taylor. Se-
mantics for the Internet of Things: Early Progress and Back to the
Future. International Journal on Semantic Web and Information Sys-
tems (IJSWIS), 8(1):1–21, 2012.

[BYV+09] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg,
and Ivona Brandic. Cloud computing and emerging IT platforms: Vi-
sion, hype, and reality for delivering computing as the 5th utility. Fu-
ture Generation Computer Systems, 25(6):599–616, 2009.

[CAF13] Ruichuan Chen, Istemi Ekin Akkus, and Paul Francis. SplitX: High-
performance Private Analytics. In Proceedings of the ACM SIGCOMM
2013 Conference, pages 315–326. ACM, 2013.

[Can17] Canasys. Cloud infrastructure market up 49%, intensifying global data
center competition. Press release 2017/1630, 2017.

[Cat11] Rick Cattell. Scalable SQL and NoSQL Data Stores. ACM SIGMOD
Record, 39(4):12–27, 2011.

[Cav08] Ann Cavoukian. Privacy in the clouds. Identity in the Information
Society, 1(1):89–108, 2008.

[Cav11] Ann Cavoukian. Privacy by design – the 7 foundational principles.
Information and Privacy Commissioner of Ontario, 2011.

Bibliography 257

[CBKA09] Justin Cappos, Ivan Beschastnikh, Arvind Krishnamurthy, and Tom
Anderson. Seattle: A Platform for Educational Cloud Computing.
In Proceedings of the 40th ACM Technical Symposium on Computer
Science Education (SIGCSE), pages 111–115. ACM, 2009.

[CCH+15] Amir Chaudhry, Jon Crowcroft, Heidi Howard, Anil Madhavapeddy,
Richard Mortier, Hamed Haddadi, and Derek McAuley. Personal Data:
Thinking Inside the Box. In Proceedings of The Fifth Decennial Aarhus
Conference on Critical Alternatives (AA), pages 29–32. Aarhus Univer-
sity Press, 2015.

[CCM10] Irving M. Copi, Carl Cohen, and Kenneth McMahon. Introduction to
Logic. Pearson, 14th edition, 2010.

[CD16] Konstantinos Christidis and Michael Devetsikiotis. Blockchains and
Smart Contracts for the Internet of Things. IEEE Access, 4:2292–2303,
2016.

[CDE+13] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes,
Christopher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kan-
thak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik,
David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lind-
say Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. Spanner: Google’s Globally-
distributed Database. ACM Transactions on Computer Systems
(TOCS), 31(3):8:1–8:22, 2013.

[CDG+13] Ronan-Alexandra Cherrueau, Rémi Douence, Hervé Grall, Jean-
Claude Royer, Mohamed Sellami, Mario Südholt, Monir Azraoui,
Kaoutar Elhhiyaoui, Refik Molva, Melek Önen, Alexandr Garaga, An-
derson Santa Oliveira, Jakub Sendor, and Karin Bernsmed. Policy
Representation Framework. Technical report, A4Cloud Consortium,
2013.

[CEL+14] Hu Chun, Yousef Elmehdwi, Feng Li, Prabir Bhattacharya, and Wei
Jiang. Outsourceable Two-Party Privacy-Preserving Biometric Au-
thentication. In Proceedings of the 9th ACM Symposium on Infor-
mation, Computer and Communications Security (ASIACCS), pages
401–412. ACM, 2014.

[CGJ+09] Richard Chow, Philippe Golle, Markus Jakobsson, Elaine Shi, Jessica
Staddon, Ryusuke Masuoka, and Jesus Molina. Controlling Data in the
Cloud: Outsourcing Computation Without Outsourcing Control. In
Proceedings of the 2009 ACM Workshop on Cloud Computing Security
(CCSW), pages 85–90. ACM, 2009.

[CHC+14] Simon Caton, Christian Haas, Kyle Chard, Kris Bubendorfer, and
Omer F. Rana. A Social Compute Cloud: Allocating and Sharing

258 Bibliography

Infrastructure Resources via Social Networks. IEEE Transactions on
Services Computing, 7(3):359–372, 2014.

[CHHD12] Daniele Catteddu, Giles Hogben, Thomas Haeberlen, and Lionel
Dupré. Cloud Computing – Benefits, Risks and Recommendations for
Information Security, Rev. B. White Paper, European Network and
Information Security Agency, 2012.

[CHK11] Dave Crocker, Tony Hansen, and Murray S. Kucherawy. DomainKeys
Identified Mail (DKIM) Signatures. Request for Comments 6376, In-
ternet Engineering Task Force, 2011.

[Cho10] Yung Chou. Cloud Computing Primer for IT Pros. https:
//blogs.technet.microsoft.com/yungchou/2010/11/15/cloud-
computing-primer-for-it-pros/, 2010. [Online, accessed 2018-07-
01].

[Cis16] Cisco Systems, Inc. SenderBase. http://www.senderbase.org/, 2016.
[Online, accessed 2016-11-16].

[CL11] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Sup-
port Vector Machines. ACM Transactions on Intelligent Systems and
Technology (TIST), 2(3):27:1–27:27, 2011.

[CL13a] Leucio Antonio Cutillo and Antonio Lioy. Privacy-by-Design Cloud
Computing Through Decentralization and Real Life Trust. In Proceed-
ings of the 2013 IEEE Thirteenth International Conference on Peer-
to-Peer Computing (P2P), pages 1–2. IEEE, 2013.

[CL13b] Leucio Antonio Cutillo and Antonio Lioy. Towards Privacy-by-Design
Peer-to-Peer Cloud Computing. In Proceedings of the 10th Interna-
tional Conference on Trust, Privacy, and Security in Digital Business
(TrustBus), pages 85–96. Springer, 2013.

[Cla97] Roger Clarke. Introduction to Dataveillance and Information Privacy,
and Definitions of Terms, 1997.

[Clo15] Cloud Industry Forum. UK Cloud adoption snapshot & trends for 2016
– The business case for Cloud. White Paper, 2015.

[Clo16] CloudEmailSecurity.org. Cloud Email Security Comparison. http:
//cloudemailsecurity.org/, 2016. [Online, accessed 2016-11-16].

[CLSX12] T.-H. Hubert Chan, Mingfei Li, Elaine Shi, and Wenchang Xu. Dif-
ferentially Private Continual Monitoring of Heavy Hitters from Dis-
tributed Streams. In Proceedings of the 12th Privacy Enhancing Tech-
nologies Symposium (PETS), pages 140–159. Springer, 2012.

[Clu18] Clustrix, Inc. Clustrix – Scale-out RDBMS. http://www.clustrix.
com/, 2018. [Online, accessed 2018-07-01].

Bibliography 259

[CLZ99] Antonio Corradi, Letizia Leonardi, and Franco Zambonelli. Diffusive
Load-Balancing Policies for Dynamic Applications. IEEE Concurrency,
7(1):22–31, 1999.

[CMT12] Dawn Cappelli, Andrew Moore, and Randall Trzeciak. The CERT
Guide to Insider Threats: How to Prevent, Detect, and Respond to
Information Technology Crimes (Theft, Sabotage, Fraud). Addison-
Wesley, 2012.

[CN12] William R. Claycomb and Alex Nicoll. Insider Threats to Cloud Com-
puting: Directions for New Research Challenges. In Proceedings of the
2012 IEEE 36th Annual Computer Software and Applications Confer-
ence (COMPSAC), pages 387–394. IEEE, 2012.

[Coo18] Rob Coombs. Arm launches first set of Threat Models
for PSA: IoT Security should start with analysis. https:
//community.arm.com/iot/b/blog/posts/arm-launches-first-
set-of-threat-models-for-psa, 2018. [Online, accessed 2018-07-
01].

[Cor17] Nigel Cory. Cross-Border Data Flows: Where Are the Barriers, and
What Do They Cost? Technical report, Information Technology &
Innovation Foundation, 2017.

[COTC17] Rasel Chowdhury, Hakima Ould-Slimane, Chamseddine Talhi, and
Mohamed Cheriet. Attribute-Based Encryption for Preserving Smart
Home Data Privacy. In Proceedings of the 15th International Confer-
ence on Smart Homes and Health Telematics (ICOST), pages 185–197.
Springer, 2017.

[Cou13] Martin Courtney. Premium binds. Engineering & Technology, 8(6):68–
73, 2013.

[CPH03] Cheun Ngen Chong, Zhonghong Peng, and Pieter H. Hartel. Secure
Audit Logging with Tamper-Resistant Hardware. In Proceedings of
the IFIP TC11 18th International Conference on Information Security
(SEC), pages 73–84. Springer, 2003.

[CRFG12] Ruichuan Chen, Alexey Reznichenko, Paul Francis, and Johannes
Gehrke. Towards Statistical Queries over Distributed Private User
Data. In Proceedings of the 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 169–182. USENIX,
2012.

[CRKH11] Delphine Christin, Andreas Reinhardt, Salil S. Kanhere, and Matthias
Hollick. A survey on privacy in mobile participatory sensing applica-
tions. Journal of Systems and Software, 84(11):1928–1946, 2011.

[CSA96] Canadian Standards Association. Model Code for the Protection of
Personal Information. National Standard of Canada CAN/CSA-Q830-
96, 1996.

260 Bibliography

[CSA10] Cloud Security Alliance. Top Threats to Cloud Computing V1.0, 2010.

[CUKB14] Terence Chen, Imdad Ullah, Mohamed Ali Kaafar, and Roksana Boreli.
Information Leakage Through Mobile Analytics Services. In Proceed-
ings of the 15th Workshop on Mobile Computing Systems and Applica-
tions (HotMobile), pages 15:1–15:6. ACM, 2014.

[Cun16] Clark D. Cunningham. Feds: We can read all your email, and
you’ll never know. http://theconversation.com/feds-we-can-
read-all-your-email-and-youll-never-know-65620, 2016. [On-
line, accessed 2018-07-01].

[CZFK12] Dunren Che, Mengxia Zhu, Jason Fairfield, and Mustafa Khaleel. Cute-
Cloud: Putting “Credit Union” Cloud Computing into Practice. In
Proceedings of the 2012 ACM Research in Applied Computation Sym-
posium (RACS), pages 80–85. ACM, 2012.

[DAM+15] Zakir Durumeric, David Adrian, Ariana Mirian, Michael Bailey, and
J. Alex Halderman. A Search Engine Backed by Internet-Wide Scan-
ning. In Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), pages 542–553. ACM,
2015.

[Dat17a] Datanyze. CDN market share in the Alexa top 1M. https://www.
datanyze.com/market-share/cdn/Alexa%20top%201M, 2017. [On-
line, accessed 2017-02-17].

[Dat17b] DataStax, Inc. Apache CassandraTM 2.0 Documentation. http://
docs.datastax.com/en/archived/cassandra/2.0/, 2017. [Online,
accessed 2018-07-01].

[DEG+15] Chris Dibben, Mark Elliot, Heather Gowans, Darren Lightfoot, and
Data Linkage Centres. The data linkage environment. In Katie Harron,
Harvey Goldstein, and Chris Dibben, editors, Methodological Develop-
ments in Data Linkage, chapter 3, pages 36–62. John Wiley & Sons,
2015.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In Proceedings of the 6th Symposium on
Operating System Design and Implementation (OSDI), pages 137–150.
USENIX, 2004.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasub-
ramanian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s
Highly Available Key-value Store. In Proceedings of Twenty-first ACM
SIGOPS Symposium on Operating Systems Principles (SOSP), pages
205–220. ACM, 2007.

Bibliography 261

[DJ10] Marten van Dijk and Ari Juels. On the Impossibility of Cryptography
Alone for Privacy-Preserving Cloud Computing. In Proceedings of the
5th USENIX Workshop on Hot Topics in Security (HotSec), pages 1–8.
USENIX, 2010.

[DK12] David Dittrich and Erin Kenneally. The Menlo Report: Ethical Prin-
ciples Guiding Information and Communication Technology Research.
Technical report, U.S. Department of Homeland Security, 2012.

[DKG+10] Adam Dou, Vana Kalogeraki, Dimitrios Gunopulos, Taneli Mielikainen,
and Ville H. Tuulos. Misco: A MapReduce Framework for Mobile Sys-
tems. In Proceedings of the 3rd International Conference on PErvasive
Technologies Related to Assistive Environments (PETRA), pages 32:1–
32:8. ACM, 2010.

[DM16] Nikos Drakos and Jeffrey Mann. Survey Analysis: Microsoft Dominates
Cloud Email in Large Public Companies but Shares the Rest With
Google. Gartner Report G00292300, 2016.

[DMM+12] Idilio Drago, Marco Mellia, Maurizio M. Munafò, Anna Sperotto,
Ramin Sadre, and Aiko Pras. Inside Dropbox: Understanding Personal
Cloud Storage Services. In Proceedings of the 2012 Internet Measure-
ment Conference (IMC), pages 481–494. ACM, 2012.

[Dom16] DomainTools. Statistics About Mail Servers. http://research.
domaintools.com/statistics/mailservers/, 2016. [Online, ac-
cessed 2016-11-16].

[DR08] Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.2. Request for Comments 5246, Internet Engineering
Task Force, 2008.

[Dri15] Doug Drinkwater. Hackers route via Tor for stealthy ‘slow-death’ DoS
attacks. https://www.scmagazineuk.com/hackers-route-via-tor-
for-stealthy-slow-death-dos-attacks/article/537484/, 2015.
[Online, accessed 2018-07-01].

[Dri16] Arthur Drichel. Large Scale Analysis of the Cloud Usage of Smartphone
Applications. Bachelor’s thesis, RWTH Aachen University, September
2016.

[Dro15] Dropbox Inc. 400 million strong. https://blogs.dropbox.com/
dropbox/2015/06/400-million-users/, 2015. [Online, accessed
2018-07-01].

[DUM10] Ali Dehghantanha, Nur Izura Udzir, and Ramlan Mahmod. Towards a
Pervasive Formal Privacy Language. In Proceedings of the 2010 IEEE
24th International Conference on Advanced Information Networking
and Applications Workshops (WAINA), pages 1085–1091. IEEE, 2010.

262 Bibliography

[Dwo06] Cynthia Dwork. Differential Privacy. In Proceedings of the 33rd In-
ternational Colloquium on Automata, Languages and Programming
(ICALP), volume II, pages 1–12. Springer, 2006.

[Eas11] Donald Eastlake. Transport Layer Security (TLS) Extensions: Exten-
sion Definitions. Request for Comments 6066, Internet Engineering
Task Force, 2011.

[EGH+14] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar,
Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel,
and Anmol N. Sheth. TaintDroid: An Information-Flow Tracking Sys-
tem for Realtime Privacy Monitoring on Smartphones. ACM Transac-
tions on Computer Systems, 32(2):5:1–5:29, 2014.

[EGSR16] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert van Re-
nesse. Bitcoin-NG: A Scalable Blockchain Protocol. In Proceedings
of the 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 45–59. USENIX, 2016.

[EHH+14] Michael Eggert, Roger Häußling, Martin Henze, Lars Hermerschmidt,
René Hummen, Daniel Kerpen, Antonio Navarro Pérez, Bernhard
Rumpe, Dirk Thißen, and Klaus Wehrle. SensorCloud: Towards the
Interdisciplinary Development of a Trustworthy Platform for Globally
Interconnected Sensors and Actuators. In Helmut Krcmar, Ralf Reuss-
ner, and Bernhard Rumpe, editors, Trusted Cloud Computing, pages
203–218. Springer, 2014.

[EHKR14] Michael Eggert, Roger Häußling, Daniel Kerpen, and Kirsten Rüss-
mann. SensorCloud: Sociological Contextualization of an Innovative
Cloud Platform. In Helmut Krcmar, Ralf Reussner, and Bernhard
Rumpe, editors, Trusted Cloud Computing, pages 295–313. Springer,
2014.

[Ela13] ElasticInbox – Scalable Email Store for the Cloud. http://www.
elasticinbox.com/, 2013. [Online, accessed 2018-07-01].

[Ele14] Nikolay Elenkov. Android Security Internals: An In-depth Guide to
Android’s Security Architecture. No Starch Press, 1st edition, 2014.

[ELL+14] Daniel Espling, Lars Larsson, Wubin Li, Johan Tordsson, and Erik
Elmroth. Modeling and Placement of Cloud Services with Internal
Structure. IEEE Transactions on Cloud Computing, 4(4):429–439,
2014.

[EMM06] Mohamed Eltoweissy, Mohammed Moharrum, and Ravi Mukkamala.
Dynamic Key Management in Sensor Networks. IEEE Communications
Magazine, 44(4):122–130, 2006.

[EMP13] Thomas Erl, Zaigham Mahmood, and Ricardo Puttini. Cloud Comput-
ing: Concepts, Technology & Architecture. Pearson Education, 2013.

Bibliography 263

[EPK14] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. RAPPOR:
Randomized Aggregatable Privacy-Preserving Ordinal Response. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (CCS), pages 1054–1067. ACM, 2014.

[ESM09] Peter R. Elespuru, Sagun Shakya, and Shivakant Mishra. MapReduce
System over Heterogeneous Mobile Devices. In Proceedings of the 7th
IFIP WG 10.2 International Workshop on Software Technologies for
Embedded and Ubiquitous Systems (SEUS), pages 168–179. Springer,
2009.

[EU95] Directive 95/46/EC of the European Parliament and of the Council of
24 October 1995 on the protection of individuals with regard to the
processing of personal data and on the free movement of such data.
Official Journal of the European Union, L281, 23/11/1995, pages 31–
50, 1995.

[FBL15] Benjamin Fabian, Annika Baumann, and Jessika Lackner. Topological
analysis of cloud service connectivity. Computers & Industrial Engi-
neering, 88:151–165, 2015.

[FDW+15] Sebastian Funke, Jörg Daubert, Alexander Wiesmaier, Panayotis Kiki-
ras, and Max Muehlhaeuser. End-2-End Privacy Architecture for IoT.
In Proceedings of the 2015 IEEE Conference on Communications and
Network Security (CNS), pages 705–706. IEEE, 2015.

[Fed14] Federal Office for Information Security (BSI). Protection Profile for
the Gateway of a Smart Metering System (Smart Meter Gateway PP).
Version 1.3 (Final Release), Certification-ID: BSI-CC-PP-0073, 2014.

[FG06] Carlos Flavián and Miguel Guinalíu. Consumer trust, perceived secu-
rity and privacy policy: Three basic elements of loyalty to a web site.
Industrial Management & Data Systems, 106(5):601–620, 2006.

[FKB+15] Denzil Ferreira, Vassilis Kostakos, Alastair R. Beresford, Janne
Lindqvist, and Anind K. Dey. Securacy: An Empirical Investigation of
Android Applications’ Network Usage, Privacy and Security. In Pro-
ceedings of the 8th ACM Conference on Security & Privacy in Wireless
and Mobile Networks (WiSec), pages 11:1–11:11. ACM, 2015.

[FKH15] Xun Fan, Ethan Katz-Bassett, and John Heidemann. Assessing Affinity
Between Users and CDN Sites. In Proceedings of the 7th International
Workshop on Traffic Monitoring and Analysis (TMA), pages 95–110.
Springer, 2015.

[FM12] Primavera De Filippi and Smari McCarthy. Cloud Computing: Cen-
tralization and Data Sovereignty. European Journal of Law and Tech-
nology, 3(2), 2012.

264 Bibliography

[Fre15] Julien Freudiger. How Talkative is Your Mobile Device?: An Experi-
mental Study of Wi-Fi Probe Requests. In Proceedings of the 8th ACM
Conference on Security & Privacy in Wireless and Mobile Networks
(WiSec), pages 8:1–8:6. ACM, 2015.

[FSC15] Pierdomenico Fiadino, Mirko Schiavone, and Pedro Casas. Vivisecting
WhatsApp in Cellular Networks: Servers, Flows, and Quality of Ex-
perience. In Proceedings of the 7th International Workshop on Traffic
Monitoring and Analysis (TMA), pages 49–63. Springer, 2015.

[FWF13] Rachel L. Finn, David Wright, and Michael Friedewald. Seven Types
of Privacy. In Serge Gutwirth, Ronald Leenes, Paul de Hert, and Yves
Poullet, editors, European Data Protection: Coming of Age, chapter 1,
pages 3–32. Springer, 2013.

[GB14] Nikolay Grozev and Rajkumar Buyya. Inter-Cloud architectures and
application brokering: taxonomy and survey. Software: Practice and
Experience, 44(3):369–390, 2014.

[GBMP13] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and
Marimuthu Palaniswami. Internet of Things (IoT): A vision, archi-
tectural elements, and future directions. Future Generation Computer
Systems, 29(7):1645–1660, 2013.

[GCEC12] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. An-
droidLeaks: Automatically Detecting Potential Privacy Leaks in An-
droid Applications on a Large Scale. In Proceedings of the 5th Inter-
national Conference on Trust and Trustworthy Computing (TRUST),
pages 291–307. Springer, 2012.

[GDPR16] Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of
such data, and repealing Directive 95/46/EC (General Data Protection
Regulation). Official Journal of the European Union, L119, 4/5/2016,
pages 1–88, 2016.

[Gee05] David Geer. Will binary XML speed network traffic? Computer,
38(4):16–18, 2005.

[Gel09] Robert Gellman. Privacy in the Clouds: Risks to Privacy and Confi-
dentiality from Cloud Computing. World Privacy Forum, 2009.

[Gel13] Barton Gellman. Edward Snowden, after months of NSA revelations,
says his mission’s accomplished. The Washington Post, December 24,
2013.

[GG11] Gerd Gigerenzer and Wolfgang Gaissmaier. Heuristic Decision Making.
Annual Review of Psychology, 62(1):451–482, 2011.

Bibliography 265

[GGBM15] Mateusz Guzek, Alicja Gniewek, Pascal Bouvry, and Jedrzej Musial.
Cloud Brokering: Current Practices and Upcoming Challenges. IEEE
Cloud Computing, 2(2):40–47, 2015.

[GGJ17] Amal Ghorbel, Mahmoud Ghorbel, and Mohamed Jmaiel. Privacy in
cloud computing environments: a survey and research challenges. The
Journal of Supercomputing, 73(6):2763–2800, 2017.

[GHMP08] Albert Greenberg, James Hamilton, David A. Maltz, and Parveen Pa-
tel. The Cost of a Cloud: Research Problems in Data Center Networks.
ACM SIGCOMM Computer Communication Review, 39(1), 2008.

[GHTC13] Katarina Grolinger, Wilson Higashino, Abhinav Tiwari, and Miriam
Capretz. Data management in cloud environments: NoSQL and
NewSQL data stores. Journal of Cloud Computing: Advances, Sys-
tems and Applications, 2(1), 2013.

[GHW+19] René Glebke, Martin Henze, Klaus Wehrle, Philipp Niemietz, Daniel
Trauth, Patrick Mattfeld, and Thomas Bergs. A Case for Integrated
Data Processing in Large-Scale Cyber-Physical Systems. In Proceed-
ings of the 52nd Hawaii International Conference on System Sciences
(HICSS), 2019.

[Gie14] Johannes van der Giet. Data Annotation Handling in a Highly Scal-
able Distributed Database System. Master’s thesis, RWTH Aachen
University, October 2014.

[GLBA99] United States Congress. Gramm-Leach-Bliley Act (GLBA). Pub.L.
106-102, 113 Stat. 1338, 1999.

[Gol04] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Ap-
plications. Cambridge University Press, 2004.

[Goo16] Google. Top Free in Android Apps – Android Apps on
Google Play. https://play.google.com/store/apps/collection/
topselling_free, 2016. [Online, accessed 2016-08-01].

[Goo18a] Google. Google App Engine. https://cloud.google.com/
appengine/, 2018. [Online, accessed 2018-07-01].

[Goo18b] Google. Google Apps for Government. http://gov.googleapps.com/,
2018. [Online, accessed 2018-07-01].

[Goo18c] Google. How Gmail ads work. https://support.google.com/mail/
answer/6603, 2018. [Online, accessed 2018-07-01].

[Gös07] Stefan Gössner. JSONPath – XPath for JSON. http://goessner.
net/articles/JsonPath/, 2007. [Online, accessed 2018-07-01].

[GR12] John Gantz and David Reinsel. The Digital Universe in 2020: Big
Data, Bigger Digital Shadows, and Biggest Growth in the Far East.
IDC iView, 2012.

266 Bibliography

[Gre17] Graham Greenleaf. Global Data Privacy Laws 2017: 120 National Data
Privacy Laws, Including Indonesia and Turkey. 145 Privacy Laws &
Business International Report, 10-13; UNSW Law Research Paper No.
45, 2017.

[Gro13] Marcel Großfengels. Machine-readable Data Handling Annotations for
the Cloud. Bachelor’s thesis, RWTH Aachen University, October 2013.

[GSMG12] Raúl Gracia-Tinedo, Marc Sánchez-Artigas, Adrián Moreno-Martínez,
and Pedro García-López. FriendBox: A Hybrid F2F Personal Storage
Application. In Proceedings of the 2012 IEEE 5th International Con-
ference on Cloud Computing (CLOUD), pages 131–138. IEEE, 2012.

[GW10] Oscar Garcia-Morchon and Klaus Wehrle. Modular Context-aware Ac-
cess Control for Medical Sensor Networks. In Proceedings of the 15th
ACM Symposium on Access Control Models and Technologies (SAC-
MAT), pages 129–138. ACM, 2010.

[GZ15] Andy Greenberg and Kim Zetter. How the Internet of Things
Got Hacked. https://www.wired.com/2015/12/2015-the-year-
the-internet-of-things-got-hacked/, 2015. [Online, accessed
2018-07-01].

[Hae10] Andreas Haeberlen. A Case for the Accountable Cloud. ACM SIGOPS
Operating Systems Review, 44(2):52–57, 2010.

[Hal16] Vanessa Halter. Privacy as a strategic advantage for healthcare prod-
ucts & services. http://www.healthtechsydney.com.au/blog/2016/
03/07/privacy-as-a-strategic-advantage-for-healthcare-
products-services/, 2016. [Online, accessed 2018-07-01].

[Han00] M. David Hanson. The Client/Server Architecture. In Gilbert Held,
editor, Server Management, chapter 1, pages 3–13. CRC Press, 2000.

[HB96] John Hawkinson and Tony Bates. Guidelines for creation, selection,
and registration of an Autonomous System (AS). Request for Com-
ments 1930, Internet Engineering Task Force, 1996.

[HBHW14] Martin Henze, Sebastian Bereda, René Hummen, and Klaus Wehrle.
SCSlib: Transparently Accessing Protected Sensor Data in the Cloud.
In Proceedings of the 6th International Symposium on Applications of
Ad hoc and Sensor Networks (AASNET), volume 37 of Procedia Com-
puter Science, pages 370–375. Elsevier, 2014.

[Hea17] Olly Headey. Running a high-availability SaaS infrastructure without
breaking the bank. http://engineering.freeagent.com/2017/02/
06/ha-infrastructure-without-breaking-the-bank/, 2017. [On-
line, accessed 2018-07-01].

Bibliography 267

[Hel15] David Hellmanns. Making Individual Cloud Usage of Smartphone
Users Transparent. Bachelor’s thesis, RWTH Aachen University, May
2015.

[Hem05] Stephen Hemminger. Network Emulation with NetEm. In
linux.conf.au, 2005.

[HFW+13] Keqiang He, Alexis Fisher, Liang Wang, Aaron Gember, Aditya Akella,
and Thomas Ristenpart. Next Stop, the Cloud: Understanding Modern
Web Service Deployment in EC2 and Azure. In Proceedings of the
2013 Conference on Internet Measurement Conference (IMC), pages
177–190. ACM, 2013.

[HG15] Wouter Haerick and Milon Gupta. 5G and the Factories of the Future.
White paper, 5G Infrastructure Public Private Partnership (5G PPP),
2015.

[HGC12] Oliver Hohlfeld, Thomas Graf, and Florin Ciucu. Longtime Behavior
of Harvesting Spam Bots. In Proceedings of the 2012 Internet Mea-
surement Conference (IMC), pages 453–460. ACM, 2012.

[HGKW13] Martin Henze, Marcel Großfengels, Maik Koprowski, and Klaus
Wehrle. Towards Data Handling Requirements-aware Cloud Comput-
ing. In Proceedings of the 2013 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), pages 266–269.
IEEE, 2013.

[HHCW12] René Hummen, Martin Henze, Daniel Catrein, and Klaus Wehrle. A
Cloud Design for User-controlled Storage and Processing of Sensor
Data. In Proceedings of the 2012 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), pages 232–240.
IEEE, 2012.

[HHH+17] Martin Henze, Jens Hiller, René Hummen, Roman Matzutt, Klaus
Wehrle, and Jan Henrik Ziegeldorf. Network Security and Privacy
for Cyber-Physical Systems. In Houbing Song, Glenn A. Fink, and
Sabina Jeschke, editors, Security and Privacy in Cyber-Physical Sys-
tems: Foundations, Principles and Applications, chapter 2, pages 25–
56. Wiley-IEEE Press, 2017.

[HHHW13] René Hummen, Jens Hiller, Martin Henze, and Klaus Wehrle. Slimfit –
A HIP DEX Compression Layer for the IP-based Internet of Things. In
Proceedings of the 2013 IEEE 9th International Conference on Wireless
and Mobile Computing, Networking and Communications (WiMob),
pages 259–266. IEEE, 2013.

[HHHW16] Martin Henze, Jens Hiller, Oliver Hohlfeld, and Klaus Wehrle. Moving
Privacy-Sensitive Services from Public Clouds to Decentralized Private
Clouds. In Proceedings of the 2016 IEEE International Conference on
Cloud Engineering Workshops (IC2EW), pages 130–135. IEEE, 2016.

268 Bibliography

[HHK+14] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häußling,
Bernhard Rumpe, and Klaus Wehrle. User-driven Privacy Enforcement
for Cloud-based Services in the Internet of Things. In Proceedings of
the 2014 International Conference on Future Internet of Things and
Cloud (FiCloud), pages 191–196. IEEE, 2014.

[HHK+16] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häußling,
Bernhard Rumpe, and Klaus Wehrle. A Comprehensive Approach to
Privacy in the Cloud-based Internet of Things. Future Generation
Computer Systems (FGCS), 56:701–718, 2016.

[HHM+13] Martin Henze, René Hummen, Roman Matzutt, Daniel Catrein, and
Klaus Wehrle. Maintaining User Control While Storing and Processing
Sensor Data in the Cloud. International Journal of Grid and High
Performance Computing, 5(4):97–112, 2013.

[HHMW14] Martin Henze, René Hummen, Roman Matzutt, and Klaus Wehrle. A
Trust Point-based Security Architecture for Sensor Data in the Cloud.
In Helmut Krcmar, Ralf Reussner, and Bernhard Rumpe, editors,
Trusted Cloud Computing, pages 77–106. Springer, 2014.

[HHMW16] Martin Henze, René Hummen, Roman Matzutt, and Klaus Wehrle.
The SensorCloud Protocol: Securely Outsourcing Sensor Data to the
Cloud. Technical Report AIB-2016-06, Department of Computer Sci-
ence, RWTH Aachen University, 2016.

[HHS+16] Martin Henze, Jens Hiller, Sascha Schmerling, Jan Henrik Ziegeldorf,
and Klaus Wehrle. CPPL: Compact Privacy Policy Language. In Pro-
ceedings of the 15th ACM Workshop on Privacy in the Electronic So-
ciety (WPES), pages 99–110. ACM, 2016.

[HHS+18] Jens Hiller, Martin Henze, Martin Serror, Eric Wagner, Jan Niklas
Richter, and Klaus Wehrle. Secure Low Latency Communication for
Constrained Industrial IoT Scenarios. In Proceedings of the 43rd IEEE
Conference on Local Computer Networks (LCN). IEEE, 2018.

[HHW13a] Martin Henze, René Hummen, and Klaus Wehrle. The Cloud Needs
Cross-Layer Data Handling Annotations. In Proceedings of the 2013
IEEE Security and Privacy Workshops (SPW), pages 18–22. IEEE,
2013.

[HHW+13b] René Hummen, Jens Hiller, Hanno Wirtz, Martin Henze, Hossein
Shafagh, and Klaus Wehrle. 6LoWPAN Fragmentation Attacks and
Mitigation Mechanisms. In Proceedings of the Sixth ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec),
pages 55–66. ACM, 2013.

[HIFZ17] Martin Henze, Ritsuma Inaba, Ina Berenice Fink, and Jan Henrik
Ziegeldorf. Privacy-preserving Comparison of Cloud Exposure Induced

Bibliography 269

by Mobile Apps. In Proceedings of the 14th EAI International Confer-
ence on Mobile and Ubiquitous Systems: Computing, Networking and
Services (MobiQuitous). ACM, 2017.

[Hil14] Jens Hiller. PriverCloud - A Peer-to-Peer Cloud for Secure Service Op-
eration. Master’s thesis, RWTH Aachen University, September 2014.

[HIPA96] United States Congress. Health Insurance Portability and Account-
ability Act of 1996 (HIPAA). Pub.L. 104–191, 110 Stat. 1936, 1996.

[HJS+03] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin
Theimer, and Alec Wolman. SkipNet: A Scalable Overlay Network
with Practical Locality Properties. In Proceedings of the 4th USENIX
Symposium on Internet Technologies and Systems (USITS). USENIX,
2003.

[HKH+16] Martin Henze, Daniel Kerpen, Jens Hiller, Michael Eggert, David
Hellmanns, Erik Mühmer, Oussama Renuli, Henning Maier, Christian
Stüble, Roger Häußling, and Klaus Wehrle. Towards Transparent In-
formation on Individual Cloud Service Usage. In Proceedings of the
2016 IEEE International Conference on Cloud Computing Technology
and Science (CloudCom), pages 366–370. IEEE, 2016.

[HKP+18] Jens Hiller, Maël Kimmerlin, Max Plauth, Seppo Heikkila, Stefan
Klauck, Ville Lindfors, Felix Eberhardt, Dariusz Bursztynowski, Je-
sus Llorente Santos, Oliver Hohlfeld, and Klaus Wehrle. Giving Cus-
tomers Control over Their Data: Integrating a Policy Language into
the Cloud. In Proceedings of the 2018 IEEE International Conference
on Cloud Engineering (IC2E), pages 241–249. IEEE, 2018.

[HMH+17] Martin Henze, Roman Matzutt, Jens Hiller, Erik Mühmer, Jan Henrik
Ziegeldorf, Johannes van der Giet, and Klaus Wehrle. Practical Data
Compliance for Cloud Storage. In Proceedings of the 2017 IEEE In-
ternational Conference on Cloud Engineering (IC2E), pages 252–258.
IEEE, 2017.

[HMH+18] Martin Henze, Roman Matzutt, Jens Hiller, Erik Mühmer, Jan Henrik
Ziegeldorf, Johannes van der Giet, and Klaus Wehrle. Complying with
Data Handling Requirements in Cloud Storage Systems. arXiv preprint
arXiv:1806.11448 [cs.NI], 2018.

[HMR+14] W. Kuan Hon, Christopher Millard, Chris Reed, Jatinder Singh, Ian
Walden, and Jon Crowcroft. Policy, Legal and Regulatory Implications
of a Europe-Only Cloud. Queen Mary School of Law Legal Studies
Research Paper 191/2015, 2014.

[HNLL04] Jason I. Hong, Jennifer D. Ng, Scott Lederer, and James A. Landay.
Privacy Risk Models for Designing Privacy-sensitive Ubiquitous Com-
puting Systems. In Proceedings of the 5th Conference on Designing

270 Bibliography

Interactive Systems: Processes, Practices, Methods, and Techniques
(DIS), pages 91–100. ACM, 2004.

[Hol07] Jan Holvast. History of privacy. In Karl de Leeuw and Jan Bergstra,
editors, The History of Information Security: A Comprehensive Hand-
book, chapter 27, pages 737–769. Elsevier, 2007.

[Hor08] John B. Horrigan. Use of Cloud Computing Applications and Services.
Data memo, Pew Research Center, 2008.

[Hos16] M. Shamim Hossain. Patient State Recognition System for Healthcare
Using Speech and Facial Expressions. Journal of Medical Systems,
40(12), 2016.

[HPB+07] Manuel Hilty, Alexander Pretschner, David Basin, Christian Schaefer,
and Thomas Walter. A Policy Language for Distributed Usage Con-
trol. In Proceedings of the 12th European Symposium On Research In
Computer Security (ESORICS), pages 531–546. Springer, 2007.

[HPH+17] Martin Henze, Jan Pennekamp, David Hellmanns, Erik Mühmer,
Jan Henrik Ziegeldorf, Arthur Drichel, and Klaus Wehrle. CloudAn-
alyzer: Uncovering the Cloud Usage of Mobile Apps. In Proceedings
of the 14th EAI International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services (MobiQuitous). ACM,
2017.

[HRGD08] Andreas Haeberlen, Rodrigo Rodrigues, Krishna Gummadi, and Peter
Druschel. Pretty Good Packet Authentication. In Proceedings of the
Fourth Conference on Hot Topics in System Dependability (HotDep).
USENIX, 2008.

[HRL14] Pei-Fang Hsu, Soumya Ray, and Yu-Yu Li-Hsieh. Examining cloud
computing adoption intention, pricing mechanism, and deployment
model. International Journal of Information Management, 34(4):474–
488, 2014.

[HS09] Gerrit Hornung and Christoph Schnabel. Data protection in Germany
I: The population census decision and the right to informational self-
determination. Computer Law & Security Review, 25(1):84–88, 2009.

[HSF+09] Shuang Hao, Nadeem Ahmed Syed, Nick Feamster, Alexander G Gray,
and Sven Krasser. Detecting Spammers with SNARE: Spatio-temporal
Network-level Automatic Reputation Engine. In Proceedings of the 18th
USENIX Security Symposium, pages 101–118. USENIX, 2009.

[HSH17] Martin Henze, Mary Peyton Sanford, and Oliver Hohlfeld. Veiled in
Clouds? Assessing the Prevalence of Cloud Computing in the Email
Landscape. In Proceedings of the 2017 Network Traffic Measurement
and Analysis Conference (TMA), pages 1–9. IEEE, 2017.

Bibliography 271

[HWM+17] Martin Henze, Benedikt Wolters, Roman Matzutt, Torsten Zimmer-
mann, and Klaus Wehrle. Distributed Configuration, Authorization
and Management in the Cloud-based Internet of Things. In Proceed-
ings of the 2017 IEEE International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom), pages 185–
192. IEEE, 2017.

[HWZ04] Minhuan Huang, Chunlei Wang, and Lufeng Zhang. Toward a Reusable
and Generic Security Aspect Library. In Proceedings of the AOSD 2004
Workshop on AOSD Technology for Application-level Security (AOSD-
SEC), 2004.

[IBM14] IBM. The Hartford Signs Agreement With IBM To Move IT To
The Cloud. http://www-03.ibm.com/press/us/en/pressrelease/
43695.wss, 2014. [Online, accessed 2018-07-01].

[IBM17] IBM. IBM ILOG CPLEX Optimization Studio, 2017.

[IDC17] International Data Corporation (IDC). Smartphone OS Market Share,
2017 Q1. https://www.idc.com/promo/smartphone-market-share/
os, 2017. [Online, accessed 2018-07-01].

[IK04] Wassim Itani and Ayman Kayssi. SPECSA: a scalable, policy-driven,
extensible, and customizable security architecture for wireless en-
terprise applications. Computer Communications, 27(18):1825–1839,
2004.

[IKC09] Wassim Itani, Ayman Kayssi, and Ali Chehab. Privacy as a Service:
Privacy-Aware Data Storage and Processing in Cloud Computing Ar-
chitectures. In Proceedings of the Eighth IEEE International Confer-
ence on Dependable, Autonomic and Secure Computing (DASC), pages
711–716. IEEE, 2009.

[Ina17] Ritsuma Inaba. Incorporation of Security Features in Cloud Usage
Analysis Tool. Internship report (Undergraduate Research Opportuni-
ties Program), RWTH Aachen University and University of Michigan,
July 2017.

[Int12] Intel IT Center. Peer Research: What’s Holding Back the Cloud?
White Paper, 2012.

[ISKČ11] Iulia Ion, Niharika Sachdeva, Ponnurangam Kumaraguru, and Srdjan
Čapkun. Home is Safer Than the Cloud!: Privacy Concerns for Con-
sumer Cloud Storage. In Proceedings of the Seventh Symposium on
Usable Privacy and Security (SOUPS), pages 13:1–13:20. ACM, 2011.

[ISO13] Information technology – Security techniques – Code of practice for in-
formation security controls, International Standards Organization/In-
ternational Electrotechnical Commission Standard ISO/IEC 27002,
Revision 2013, 2013.

272 Bibliography

[ISO14] Information technology – Cloud computing – Overview and vocabu-
lary, International Standards Organization/International Electrotech-
nical Commission Standard ISO/IEC 17788, Revision 2014, 2014.

[JBM+17] Sabina Jeschke, Christian Brecher, Tobias Meisen, Denis Özdemir, and
Tim Eschert. Industrial Internet of Things and Cyber Manufacturing
Systems. In Sabina Jeschke, Christian Brecher, Houbing Song, and
Danda B. Rawat, editors, Industrial Internet of Things: Cybermanu-
facturing Systems, pages 3–19. Springer, 2017.

[JBS15] Michael Jones, John Bradley, and Nat Sakimura. JSON Web Signature
(JWS). Request for Comments 7515, Internet Engineering Task Force,
2015.

[JG11] Wayne Jansen and Timothy Grance. Guidelines on Security and Pri-
vacy in Public Cloud Computing. NIST Special Publication 800-144,
National Institute of Standards and Technology, 2011.

[JH15] Michael Jones and Joe Hildebrand. JSON Web Encryption (JWE).
Request for Comments 7516, Internet Engineering Task Force, 2015.

[JLG08] Paul T. Jaeger, Jimmy Lin, and Justin M. Grimes. Cloud Computing
and Information Policy: Computing in a Policy Cloud? Journal of
Information Technology & Politics, 5(3):269–283, 2008.

[JMR+14] Hubert A. Jäger, Arnold Monitzer, Ralf Rieken, Edmund Ernst, and
Khiem Dau Nguyen. Sealed Cloud – A Novel Approach to Safeguard
against Insider Attacks. In Helmut Krcmar, Ralf Reussner, and Bern-
hard Rumpe, editors, Trusted Cloud Computing, pages 15–34. Springer,
2014.

[JNC12] YoungHoon Jung, Richard Neill, and Luca P. Carloni. A Broadband
Embedded Computing System for MapReduce Utilizing Hadoop. In
Proceedings of the 2012 IEEE 4th International Conference on Cloud
Computing Technology and Science (CloudCom), pages 1–9. IEEE,
2012.

[Jon15] Michael Jones. JSON Web Key (JWK). Request for Comments 7517,
Internet Engineering Task Force, 2015.

[JRSJ15] Mosarrat Jahan, Mohsen Rezvani, Aruna Seneviratne, and Sanjay Jha.
Method for Providing Secure and Private Fine-grained Access to Out-
sourced Data. In Proceedings of the 2015 IEEE 40th Conference on
Local Computer Networks (LCN), pages 406–409. IEEE, 2015.

[JSA+17] Cullen Jennings, Zach Shelby, Jari Arkko, Ari Keränen, and Carsten
Bormann. Media Types for Sensor Measurement Lists (SenML).
Internet-Draft draft-ietf-core-senml-11, Internet Engineering Task
Force, 2017. Work in Progress.

Bibliography 273

[JZV+12] Martin Gilje Jaatun, Gansen Zhao, Athanasios V. Vasilakos, Ås-
mund Ahlmann Nyre, Stian Alapnes, and Yong Tang. The design of
a redundant array of independent net-storages for improved confiden-
tiality in cloud computing. Journal of Cloud Computing, 1(1), 2012.

[Kas05] Debbie V. S. Kasper. The Evolution (or Devolution) of Privacy. Soci-
ological Forum, 20(1):69–92, 2005.

[KCLC07] Ponnurangam Kumaraguru, Lorrie Faith Cranor, Jorge Lobo, and
Seraphin B. Calo. A Survey of Privacy Policy Languages. In Pro-
ceedings of the SOUPS Workshop on Usable IT Security Management
(USM), 2007.

[KDZ18] Daniel Kerpen, Matthias Dorgeist, and Sascha Zantis. Intersecting the
Digital Maze. Considering Ethics in Cloud-Based Services’ Research.
In Farina Madita Dobrick, Jana Fischer, and Lutz M. Hagen, editors,
Research Ethics in the Digital Age: Ethics for the Social Sciences and
Humanities in Times of Mediatization and Digitization, pages 143–152.
Springer, 2018.

[KFJ03] Lalana Kagal, Tim Finin, and Anupam Joshi. A policy language for
a pervasive computing environment. In Proceedings of the IEEE 4th
International Workshop on Policies for Distributed Systems and Net-
works (POLICY), pages 63–74. IEEE, 2003.

[Kin17] Rachel King. Here’s Why Amazon’s Cloud Suffered a Meltdown This
Week. http://fortune.com/2017/03/02/amazon-cloud-outage/,
2017. [Online, accessed 2018-07-01].

[Kit14] Scott Kitterman. Sender Policy Framework (SPF) for Authorizing Use
of Domains in Email, Version 1. Request for Comments 7208, Internet
Engineering Task Force, 2014.

[KJK16] Hajoon Ko, Jiong Jin, and Sye Loong Keoh. Secure Service Virtu-
alization in IoT by Dynamic Service Dependency Verification. IEEE
Internet of Things Journal, 3(6):1006–1014, 2016.

[KJK17] Hajoon Ko, Jiong Jin, and Sye Loong Keoh. ViotSOC: Controlling
Access to Dynamically Virtualized IoT Services using Service Object
Capability. In Proceedings of the 3rd ACM Workshop on Cyber-Physical
System Security (CPSS), pages 69–80. ACM, 2017.

[KKLL09] Won Kim, Soo Dong Kim, Eunseok Lee, and Sungyoung Lee. Adop-
tion Issues for Cloud Computing. In Proceedings of the 7th Interna-
tional Conference on Advances in Mobile Computing and Multimedia
(MoMM), pages 2–5. ACM, 2009.

[KL10] Seny Kamara and Kristin Lauter. Cryptographic Cloud Storage. In
Proceedings of the 14th International Conference on Financial Cryp-
tography and Data Security (FC) Workshops, pages 136–149. Springer,
2010.

274 Bibliography

[Kle08] John C. Klensin. Simple Mail Transfer Protocol. Request for Comments
5321, Internet Engineering Task Force, 2008.

[KNSV13] Amin M. Khan, Leandro Navarro, Leila Sharifi, and Luís Veiga. Clouds
of Small Things: Provisioning Infrastructure-as-a-Service from within
Community Networks. In Proceedings of the 2013 IEEE 9th Interna-
tional Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), pages 16–21. IEEE, 2013.

[Kop13] Maik Koprowski. Realizing Data Handling Annotation Support in the
Cloud Stack with Customized Data Distribution. Bachelor’s thesis,
RWTH Aachen University, September 2013.

[KPPK11] Prachi Kumari, Alexander Pretschner, Jonas Peschla, and Jens-
Michael Kuhn. Distributed Data Usage Control for Web Applica-
tions: A Social Network Implementation. In Proceedings of the First
ACM Conference on Data and Application Security and Privacy (CO-
DASPY), pages 85–96. ACM, 2011.

[Kra96] Hugo Krawczyk. SKEME: A Versatile Secure Key Exchange Mecha-
nism for Internet. In Proceedings of Internet Society Symposium on
Network and Distributed Systems Security (NDSS), pages 114–127.
IEEE, 1996.

[Kri14] Aivar Kripsaar. Access Control for Sensor Data in the Cloud. Bache-
lor’s thesis, RWTH Aachen University, January 2014.

[KS17] Minhaj Ahmad Khan and Khaled Salah. IoT security: Review,
blockchain solutions, and open challenges. Future Generation Com-
puter Systems, 82:395–411, 2017.

[KV10] Ronald L. Krutz and Russell Dean Vines. Cloud Security: A Compre-
hensive Guide to Secure Cloud Computing. Wiley, 2010.

[KY04] Bryan Klimt and Yiming Yang. Introducing the Enron Corpus. In
Proceedings of the First Conference on Email and Anti-Spam (CEAS),
2004.

[KYKH16] Mohammad Mahdi Kashef, Hyenyoung Yoon, Mehdi Keshavarz, and
Junseok Hwang. Decision Support Tool for IoT Service Providers for
Utilization of Multi Clouds. In Proceedings of the 2016 18th Interna-
tional Conference on Advanced Communication Technology (ICACT),
pages 91–96. IEEE, 2016.

[Lam81] Leslie Lamport. Password Authentication with Insecure Communica-
tion. Communications of the ACM, 24(11):770–772, 1981.

[LC16] Adam Langley and Wan-Teh Chang. QUIC Crypto. Technical Report
Revision 20161206, Google, 2016.

Bibliography 275

[Leh14] Hendrik vom Lehn. On data markets as a means to privacy protection:
An ethical evaluation of the treatment of personal data as a commodity.
Master’s thesis, Delft University of Technology, August 2014.

[LFK+14] Heiner Lasi, Peter Fettke, Hans-Georg Kemper, Thomas Feld, and
Michael Hoffmann. Industry 4.0. Business & Information Systems
Engineering, 6(4):239–242, 2014.

[LGW06] Olaf Landsiedel, Stefan Götz, and Klaus Wehrle. Towards Scalable Mo-
bility in Distributed Hash Tables. In Proceedings of the Sixth IEEE In-
ternational Conference on Peer-to-Peer Computing (P2P), pages 203–
209. IEEE, 2006.

[LHBC12] Ahmed Lounis, Abdelkrim Hadjidj, Abdelmadjid Bouabdallah, and
Yacine Challal. Secure and Scalable Cloud-Based Architecture for e-
Health Wireless Sensor Networks. In Proceedings of the 2012 21st In-
ternational Conference on Computer Communications and Networks
(ICCCN), pages 1–7. IEEE, 2012.

[LHFY13] Songbin Liu, Xiaomeng Huang, Haohuan Fu, and Guangwen Yang.
Understanding Data Characteristics and Access Patterns in a Cloud
Storage System. In Proceedings of the 2013 13th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud, and Grid Computing (CCGrid),
pages 327–334. IEEE, 2013.

[LHL15] Jianghua Liu, Xinyi Huang, and Joseph K. Liu. Secure sharing of Per-
sonal Health Records in cloud computing: Ciphertext-Policy Attribute-
Based Signcryption. Future Generation Computer Systems, 52:67–76,
2015.

[Lin00] John Linn. Generic Security Service Application Program Interface
Version 2, Update 1. Request for Comments 2743, Internet Engineering
Task Force, 2000.

[LLSH14] Jialiu Lin, Bin Liu, Norman Sadeh, and Jason I. Hong. Modeling
Users’ Mobile App Privacy Preferences: Restoring Usability in a Sea
of Permission Settings. In Proceedings of the Tenth Symposium on
Usable Privacy and Security (SOUPS), pages 199–212. USENIX, 2014.

[LLV07] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-
Closeness: Privacy Beyond k-Anonymity and l-Diversity. In Proceed-
ings of the 2007 IEEE 23rd International Conference on Data Engi-
neering (ICDE), pages 106–115. IEEE, 2007.

[LM10] Avinash Lakshman and Prashant Malik. Cassandra: A Decentralized
Structured Storage System. ACM SIGOPS Operating Systems Review,
44(2):35–40, 2010.

[Loh12] Steve Lohr. The Age of Big Data. http://www.nytimes.com/2012/
02/12/sunday-review/big-datas-impact-in-the-world.html,
2012. [Online, accessed 2018-07-01].

276 Bibliography

[LPGD16] Lydia Leong, Gregor Petri, Bob Gill, and Mike Dorosh. Magic Quad-
rant for Cloud Infrastructure as a Service, Worldwide. Gartner Report
G00278620, 2016.

[LSW04] Karthik Lakshminarayanan, Ion Stoica, and Klaus Wehrle. Support
for Service Composition in i3. In Proceedings of the 12th Annual ACM
International Conference on Multimedia, pages 108–111. ACM, 2004.

[LTM+11] Fang Liu, Jin Tong, Jian Mao, Robert Bohn, John Messina, Lee Bad-
ger, and Dawn Leaf. NIST Cloud Computing Reference Architecture.
NIST Special Publication 500-292, National Institute of Standards and
Technology, 2011.

[LVCD13] Fei Li, Michael Voegler, Markus Claessens, and Schahram Dustdar.
Efficient and Scalable IoT Service Delivery on Cloud. In Proceedings
of the 2013 IEEE Sixth International Conference on Cloud Computing
(CLOUD), pages 740–747. IEEE, 2013.

[LVL+15] Anh Le, Janus Varmarken, Simon Langhoff, Anastasia Shuba, Minas
Gjoka, and Athina Markopoulou. AntMonitor: A System for Monitor-
ing from Mobile Devices. In Proceedings of the 2015 ACM SIGCOMM
Workshop on Crowdsourcing and Crowdsharing of Big (Internet) Data
(C2B(1)D), pages 15–20. ACM, 2015.

[LWBL17] Yuzhu Liang, Tian Wang, Md Zakirul Alam Bhuiyan, and Anfeng
Liu. Research on Coupling Reliability Problem in Sensor-Cloud Sys-
tem. In Proceedings of the 10th International Conference on Security,
Privacy and Anonymity in Computation, Communication and Storage
(SpaCCS), pages 468–478. Springer, 2017.

[LYZ+13] Ming Li, Shucheng Yu, Yao Zheng, Kui Ren, and Wenjing Lou. Scalable
and Secure Sharing of Personal Health Records in Cloud Computing
Using Attribute-Based Encryption. IEEE Transactions on Parallel and
Distributed Systems, 24(1):131–143, 2013.

[MAB+08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
OpenFlow: Enabling Innovation in Campus Networks. ACM SIG-
COMM Computer Communication Review, 38(2):69–74, 2008.

[Man13] Alessandro Mantelero. The EU Proposal for a General Data Protection
Regulation and the roots of the ‘right to be forgotten’. Computer Law
& Security Review, 29(3):229–235, 2013.

[Mar16] Patrick Marx. Behavioural Nudging through Privacy-Preserving Com-
parisons. Master’s thesis, RWTH Aachen University, November 2016.

[Mat13] Roman Matzutt. User-controlled Utilization of Sensor Data for Cloud
Computing. Bachelor’s thesis, RWTH Aachen University, March 2013.

Bibliography 277

[MB02] Petros Maniatis and Mary Baker. Secure History Preservation through
Timeline Entanglement. In Proceedings of the 11th USENIX Security
Symposium, pages 297–312. USENIX, 2002.

[MBK+12] Ildar Muslukhov, Yazan Boshmaf, Cynthia Kuo, Jonathan Lester, and
Konstantin Beznosov. Understanding Users’ Requirements for Data
Protection in Smartphones. In Proceedings of the 2012 IEEE 28th
International Conference on Data Engineering Workshops (ICDEW),
pages 228–235. IEEE, 2012.

[McA16] Rebecca McAdams. The Forrester WaveTM: Email Marketing Service
Providers, Q3 2016. Forrester Research, Inc., 2016.

[McM12] Robert McMillan. (Real) Storm Crushes Amazon Cloud, Knocks
out Netflix, Pinterest, Instagram. https://www.wired.com/2012/06/
real-clouds-crush-amazon/, 2012. [Online, accessed 2018-07-01].

[ME10] Tyler Moore and Benjamin Edelman. Measuring the Perpetrators and
Funders of Typosquatting. In Proceedings of the 14th International
Conference on Financial Cryptography and Data Security (FC), pages
175–191. Springer, 2010.

[MFB+15] Simone Mutti, Yanick Fratantonio, Antonio Bianchi, Luca Invernizzi,
Jacopo Corbetta, Dhilung Kirat, Christopher Kruegel, and Giovanni
Vigna. BareDroid: Large-Scale Analysis of Android Apps on Real
Devices. In Proceedings of the 31st Annual Computer Security Appli-
cations Conference (ACSAC), pages 71–80. ACM, 2015.

[MG11] Peter Mell and Timothy Grance. The NIST Definition of Cloud Com-
puting. NIST Special Publication 800-145, National Institute of Stan-
dards and Technology, 2011.

[MGM+10] Richard Mortier, Chris Greenhalgh, Derek McAuley, Alexa Spence,
Anil Madhavapeddy, Jon Crowcroft, and Steven Hand. The Personal
Container, or Your Life in Bits. In Digital Futures Workshop, 2010.

[MH12] Ming Mao and Marty Humphrey. A Performance Study on the VM
Startup Time in the Cloud. In Proceedings of the 2012 IEEE Fifth
International Conference on Cloud Computing (CLOUD), pages 423–
430. IEEE, 2012.

[MHCK07] Gabriel Montenegro, Jonathan Hui, David Culler, and Nandakishore
Kushalnagar. Transmission of IPv6 Packets over IEEE 802.15.4 Net-
works. Request for Comments 4944, Internet Engineering Task Force,
2007.

[MHH+16] Roman Matzutt, Oliver Hohlfeld, Martin Henze, Robin Rawiel,
Jan Henrik Ziegeldorf, and Klaus Wehrle. POSTER: I Don’t Want
That Content! On the Risks of Exploiting Bitcoin’s Blockchain as a

278 Bibliography

Content Store. In Proceedings of the 23rd ACM Conference on Com-
puter and Communications Security (CCS), pages 1769–1771. ACM,
2016.

[MHH+18] Roman Matzutt, Jens Hiller, Martin Henze, Jan Henrik Ziegeldorf,
Dirk Müllmann, Oliver Hohlfeld, and Klaus Wehrle. A Quantitative
Analysis of the Impact of Arbitrary Blockchain Content on Bitcoin. In
Proceedings of the 22nd International Conference on Financial Cryp-
tography and Data Security (FC). Springer, 2018.

[MHZ+18] Roman Matzutt, Martin Henze, Jan Henrik Ziegeldorf, Jens Hiller,
and Klaus Wehrle. Thwarting Unwanted Blockchain Content Insertion.
In Proceedings of the 2018 IEEE International Conference on Cloud
Engineering (IC2E), pages 364–370. IEEE, 2018.

[Mic94] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits.
McGraw-Hill, 1st edition, 1994.

[Mic16a] Microsoft. A Cloud for Global Good – A policy roadmap for a trusted,
responsible, and inclusive cloud, 2016.

[Mic16b] Microsoft Azure. Azure Regions. https://azure.microsoft.com/
en-us/regions/, 2016. [Online, accessed 2016-09-08].

[Mic17] Microsoft. Microsoft Security Intelligence Report, Volume 22, January
through March, 2017.

[Mil13] Christopher Millard, editor. Cloud Computing Law. Oxford University
Press, 2013.

[Mil16] Ron Miller. How AWS came to be. https://techcrunch.com/2016/
07/02/andy-jassys-brief-history-of-the-genesis-of-aws/,
2016. [Online, accessed 2018-07-01].

[MJ17] Azizbek Marakhimov and Jaehun Joo. Consumer adaptation and infu-
sion of wearable devices for healthcare. Computers in Human Behavior,
76:135–148, 2017.

[MKGV07] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthu-
ramakrishnan Venkitasubramaniam. l-Diversity: Privacy Beyond k-
Anonymity. ACM Transactions on Knowledge Discovery from Data,
1(1), 2007.

[MKH+13] Philip Mayer, Annabelle Klarl, Rolf Hennicker, Mariachiara Puviani,
Francesco Tiezzi, Rosario Pugliese, Jaroslav Keznikl, and Tomáš Bureš.
The Autonomic Cloud: A Vision of Voluntary, Peer-2-Peer Cloud Com-
puting. In Proceedings of the 2013 IEEE 7th International Conference
on Self-Adaptation and Self-Organizing Systems Workshops (SASOW),
pages 89–94. IEEE, 2013.

Bibliography 279

[MKL09] Tim Mather, Subra Kumaraswamy, and Shahed Latif. Cloud Secu-
rity and Privacy: An Enterprise Perspective on Risks and Compliance.
O’Reilly, 2009.

[MLB+11] Sean Marston, Zhi Li, Subhajyoti Bandyopadhyay, Juheng Zhang, and
Anand Ghalsasi. Cloud computing – The business perspective. Deci-
sion Support Systems, 51(1):176–189, 2011.

[MM10] Frank McSherry and Ratul Mahajan. Differentially-Private Network
Trace Analysis. In Proceedings of the ACM SIGCOMM 2010 Confer-
ence, pages 123–134. ACM, 2010.

[MMOT14] Pieter-Jan Maenhaut, Hendrik Moens, Veerle Ongenae, and Filip
De Turck. Scalable User Data Management in Multi-Tenant Cloud
Environments. In Proceedings of the 2014 10th International Confer-
ence on Network and Service Management (CNSM), pages 268–271.
IEEE, 2014.

[MMOT15] Pieter-Jan Maenhaut, Hendrik Moens, Veerle Ongenae, and Filip
De Turck. Design and Evaluation of a Hierarchical Multi-Tenant Data
Management Framework for Cloud Applications. In Proceedings of
the 2015 IFIP/IEEE International Symposium on Integrated Network
Management (IM), pages 1208–1213. IEEE, 2015.

[MMV+15] Pieter-Jan Maenhaut, Hendrik Moens, Bruno Volckaert, Veerle Onge-
nae, and Filip De Turck. Design of a Hierarchical Software-Defined
Storage System for Data-Intensive Multi-Tenant Cloud Applications.
In Proceedings of the 2015 11th International Conference on Network
and Service Management (CNSM), pages 22–28. IEEE, 2015.

[MMV+17] Pieter-Jan Maenhaut, Hendrik Moens, Bruno Volckaert, Veerle Onge-
nae, and Filip De Turck. A Dynamic Tenant-Defined Storage System
for Efficient Resource Management in Cloud Applications. Journal of
Network and Computer Applications, 93(Supplement C):182–196, 2017.

[MMZ+17] Roman Matzutt, Dirk Müllmann, Eva-Maria Zeissig, Christiane Horst,
Kai Kasugai, Sean Lidynia, Simon Wieninger, Jan Henrik Ziegeldorf,
Gerhard Gudergan, Indra Spiecker gen. Döhmann, Klaus Wehrle, and
Martina Ziefle. myneData: Towards a Trusted and User-controlled
Ecosystem for Sharing Personal Data. In Proceedings of INFORMATIK
2017, pages 1073–1084. Gesellschaft für Informatik, 2017.

[MNP+11] Philippe Massonet, Syed Naqvi, Christophe Ponsard, Joseph Latan-
icki, Benny Rochwerger, and Massimo Villari. A Monitoring and Au-
dit Logging Architecture for Data Location Compliance in Federated
Cloud Infrastructures. In Proceedings of the 2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd
Forum (IPDPSW), pages 1510–1517. IEEE, 2011.

280 Bibliography

[Moc87] Paul V. Mockapetris. Domain names – concepts and facilities. Request
for Comments 1034, Internet Engineering Task Force, 1987.

[MPP+08] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Re-
iter, and Hiroshi Isozaki. Flicker: An Execution Infrastructure for TCB
Minimization. In Proceedings of the 3rd ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems 2008 (EuroSys), pages 315–328.
ACM, 2008.

[MPS+13] Delfina Malandrino, Andrea Petta, Vittorio Scarano, Luigi Serra, Raf-
faele Spinelli, and Balachander Krishnamurthy. Privacy Awareness
About Information Leakage: Who Knows What About Me? In Pro-
ceedings of the 12th ACM Workshop on Workshop on Privacy in the
Electronic Society (WPES), pages 279–284. ACM, 2013.

[MRAA17] Ghulam Muhammad, SK Md Mizanur Rahman, Abdulhameed Ale-
laiwi, and Atif Alamri. Smart Health Solution Integrating IoT and
Cloud: A Case Study of Voice Pathology Monitoring. IEEE Commu-
nications Magazine, 55(1):69–73, 2017.

[MS10] Krish Muralidhar and Rathindra Sarathy. Does Differential Privacy
Protect Terry Gross’ Privacy? In Proceedings of the International
Conference on Privacy in Statistical Databases (PSD), pages 200–209.
Springer, 2010.

[MSPC12] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich
Chlamtac. Internet of Things: Vision, Applications and Research Chal-
lenges. Ad Hoc Networks, 10(7):1497–1516, 2012.

[MSWP14] Yves-Alexandre de Montjoye, Erez Shmueli, Samuel S. Wang, and
Alex Sandy Pentland. openPDS: Protecting the Privacy of Metadata
through SafeAnswers. PLOS ONE, 9(7), 2014.

[MT09] Di Ma and Gene Tsudik. A New Approach to Secure Logging. ACM
Transactions on Storage, 5(1):2:1–2:21, 2009.

[Müh14] Erik Mühmer. Analyzing Cloud Usage by Observing Network Traffic.
Bachelor’s thesis, RWTH Aachen University, September 2014.

[Nak08] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System,
2008.

[NG15] Jan Kristof Nidzwetzki and Ralf Hartmut Güting. Distributed SEC-
ONDO: A Highly Available and Scalable System for Spatial Data Pro-
cessing. In Proceedings of the 14th International Symposium on Spatial
and Temporal Databases (SSTD), pages 491–496. Springer, 2015.

[NLB13] Rimma V. Nehme, Hyo-Sang Lim, and Elisa Bertino. Fence: Continu-
ous access control enforcement in dynamic data stream environments.
In Proceedings of the Third ACM Conference on Data and Application
Security and Privacy (CODASPY), pages 243–254. ACM, 2013.

Bibliography 281

[NSV+15] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leontiadis, Jeremy
Blackburn, Diego R. López, Konstantina Papagiannaki, Pablo Ro-
driguez Rodriguez, and Peter Steenkiste. Multi-Context TLS (mcTLS):
Enabling Secure In-Network Functionality in TLS. In Proceedings of
the 2015 ACM Conference on Special Interest Group on Data Commu-
nication (SIGCOMM), pages 199–212. ACM, 2015.

[NWZ12] Wee Keong Ng, Yonggang Wen, and Huafei Zhu. Private Data Dedu-
plication Protocols in Cloud Storage. In Proceedings of the 27th Annual
ACM Symposium on Applied Computing, pages 441–446. ACM, 2012.

[Oas13] OASIS Open. eXtensible Access Control Markup Language (XACML)
Version 3.0. OASIS Standard, 2013.

[OECD80] Organisation for Economic Co-operation and Development. OECD
Guidelines on the Protection of Privacy and Transborder Flows of Per-
sonal Data, 1980.

[Ölc13] Devran Ölcer. Efficient Signature Schemes for Sensor Data in the
Cloud. Master’s thesis, RWTH Aachen University, November 2013.

[OSGJ13] Anderson Santana De Oliveira, Jakub Sendor, Alexander Garaga, and
Kateline Jenatton. Monitoring Personal Data Transfers in the Cloud.
In Proceedings of the 2013 IEEE 5th International Conference on Cloud
Computing Technology and Science (CloudCom), pages 347–354. IEEE,
2013.

[ÖV11] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed
Database Systems. Springer, 3rd edition, 2011.

[Own18] ownCloud – The last cloud collaboration platform you’ll ever need.
https://owncloud.org/, 2018. [Online, accessed 2018-07-01].

[Pai99] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In Proceedings of the International Conference
on the Theory and Application of Cryptographic Techniques (EURO-
CRYPT), pages 223–238. Springer, 1999.

[PAS17] Luis Pacheco, Eduardo Alchieri, and Priscila Solis. Architecture for Pri-
vacy in Cloud of Things. In Proceedings of the 19th International Con-
ference on Enterprise Information Systems (ICEIS), volume 2, pages
487–494. SciTePress, 2017.

[PB10] Siani Pearson and Azzedine Benameur. Privacy, Security and Trust
Issues Arising from Cloud Computing. In Proceedings of the 2010 IEEE
Second International Conference on Cloud Computing Technology and
Science (CloudCom), pages 693–702. IEEE, 2010.

[PBS+15] Pawani Porambage, An Braeken, Corinna Schmitt, Andrei Gurtov,
Mika Ylianttila, and Burkhard Stiller. Group Key Establishment for

282 Bibliography

Secure Multicasting in IoT-enabled Wireless Sensor Networks. In Pro-
ceedings of the 2015 IEEE 40th Conference on Local Computer Net-
works (LCN), pages 482–485. IEEE, 2015.

[PBSE16] Thomas F. J.-M. Pasquier, Jean Bacon, Jatinder Singh, and David
Eyers. Data-Centric Access Control for Cloud Computing. In Proceed-
ings of the 21st ACM on Symposium on Access Control Models and
Technologies (SACMAT), pages 81–88. ACM, 2016.

[PCB15] Mithun Paul, Christian Collberg, and Derek Bambauer. A Possible
Solution for Privacy Preserving Cloud Data Storage. In Proceedings of
the 2015 IEEE International Conference on Cloud Engineering (IC2E),
pages 397–403. IEEE, 2015.

[PCI15] PCI Security Standards Council. Payment Card Industry (PCI) Data
Security Standard – Requirements and Security Assessment Proce-
dures, Version 3.1, 2015.

[PDG+16] Maria Rita Palattella, Mischa Dohler, Alfredo Grieco, Gianluca Rizzo,
Johan Torsner, Thomas Engel, and Latif Ladid. Internet of Things
in the 5G Era: Enablers, Architecture and Business Models. IEEE
Journal on Selected Areas in Communications, 34(3):510–527, 2016.

[Pea09] Siani Pearson. Taking Account of Privacy when Designing Cloud Com-
puting Services. In Proceedings of the 2009 ICSE Workshop on Software
Engineering Challenges of Cloud Computing (CLOUD), pages 44–52.
IEEE, 2009.

[Pea13] Siani Pearson. Privacy, Security and Trust in Cloud Computing. In
Siani Pearson and George Yee, editors, Privacy and Security for Cloud
Computing, chapter 1, pages 3–42. Springer, 2013.

[Per15] Cristian Perra. A Framework for User Control Over Media Data Based
on a Trusted Point. In Proceedings of the 2015 IEEE International
Conference on Consumer Electronics (ICCE), pages 1–2. IEEE, 2015.

[Per17] Nicole Perlroth. All 3 Billion Yahoo Accounts Were Affected by
2013 Attack. https://www.nytimes.com/2017/10/03/technology/
yahoo-hack-3-billion-users.html, 2017. [Online, accessed 2018-
07-01].

[PFNW12] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David Wagner.
AdDroid: Privilege Separation for Applications and Advertisers in An-
droid. In Proceedings of the 7th Symposium on Information, Computer
and Communications Security (ASIACCS), pages 71–72. ACM, 2012.

[PGB11] Zachary N. J. Peterson, Mark Gondree, and Robert Beverly. A Position
Paper on Data Sovereignty: The Importance of Geolocating Data in
the Cloud. In Proceedings of the 3rd USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud). USENIX, 2011.

Bibliography 283

[PHF15] Enric Pujol, Oliver Hohlfeld, and Anja Feldmann. Annoyed Users: Ads
and Ad-Block Usage in the Wild. In Proceedings of the 2015 Internet
Measurement Conference (IMC), pages 93–106. ACM, 2015.

[PHW17] Jan Pennekamp, Martin Henze, and Klaus Wehrle. A Survey on
the Evolution of Privacy Enforcement on Smartphones and the Road
Ahead. Pervasive and Mobile Computing, 42:58–76, 2017.

[PIPE00] Parliament of Canada. Personal Information Protection and Electronic
Documents Act (PIPEDA). S.C. 2000, c. 5, 2000.

[PJ12] Jayaraj Poroor and Bharat Jayaraman. C2L: A formal policy language
for secure cloud configurations. In Proceedings of the 3rd International
Conference on Ambient Systems, Networks and Technologies (ANT),
pages 499–506. Elsevier, 2012.

[Pla99] John C. Platt. Fast Training of Support Vector Machines Using Se-
quential Minimal Optimization. In Christopher J. C. Burges, Bernhard
Schölkopf, and Alexander J. Smola, editors, Advances in Kernel Meth-
ods: Support Vector Learning, chapter 12. MIT Press, 1999.

[Plu17] Libby Plummer. Volkswagen Saves Time and Money by Moving to
a Private Cloud Network. https://www.intel.co.uk/content/www/
uk/en/it-managers/volkswagen-private-cloud.html, 2017. [On-
line, accessed 2017-08-31].

[PLZ+16] Andriy Panchenko, Fabian Lanze, Andreas Zinnen, Martin Henze, Jan
Pennekamp, Klaus Wehrle, and Thomas Engel. Website Fingerprint-
ing at Internet Scale. In Proceedings of the 23rd Annual Network and
Distributed System Security Symposium (NDSS). The Internet Society,
2016.

[PM11] Siani Pearson and Marco Casassa Mont. Sticky Policies: An Approach
for Managing Privacy across Multiple Parties. Computer, 44(9):60–68,
2011.

[PMCR11] Siani Pearson, Marco Casassa Mont, Liqun Chen, and Archie Reed.
End-to-End Policy-Based Encryption and Management of Data in the
Cloud. In Proceedings of the 2011 IEEE Third International Conference
on Cloud Computing Technology and Science (CloudCom), pages 764–
771. IEEE, 2011.

[PMH+17] Andriy Panchenko, Asya Mitseva, Martin Henze, Fabian Lanze, Klaus
Wehrle, and Thomas Engel. Analysis of Fingerprinting Techniques
for Tor Hidden Services. In Proceedings of the 15th ACM Workshop on
Privacy in the Electronic Society (WPES), pages 165–175. ACM, 2017.

[Pos81] Jon Postel. Internet Protocol. Request for Comments 791, Internet
Engineering Task Force, 1981.

284 Bibliography

[PP12] Ioannis Papagiannis and Peter Pietzuch. CloudFilter: Practical Con-
trol of Sensitive Data Propagation to the Cloud. In Proceedings of
the 2012 ACM Cloud Computing Security Workshop (CCSW), pages
97–102. ACM, 2012.

[PP15] Thomas F. J.-M. Pasquier and Julia E. Powles. Expressing and En-
forcing Location Requirements in the Cloud Using Information Flow
Control. In Proceedings of the 2015 IEEE International Conference on
Cloud Engineering (IC2E), pages 410–415. IEEE, 2015.

[PPL14] PPL FI-WARE Data Handling Generic Enabler. https://github.
com/fdicerbo/fiware-ppl, 2014. [Online, accessed 2018-07-01].

[PPP13] Boja Pooja, M. M. Manohara Pai, and Radhika M. Pai. A Dual Cloud
Based Secure Environmental Parameter Monitoring System: A WSN
Approach. In Proceedings of the 4th International Conference on Cloud
Computing (CloudComp 2013), pages 189–198. Springer, 2013.

[PQ95] Terence J. Parr and Russell W. Quong. ANTLR: A predicated-LL(k)
parser generator. Software: Practice and Experience, 25(7):789–810,
1995.

[PRZB11] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and
Hari Balakrishnan. CryptDB: Protecting Confidentiality with En-
crypted Query Processing. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles (SOSP), pages 85–100.
ACM, 2011.

[PSBE16] Thomas F. J.-M. Pasquier, Jatinder Singh, Jean Bacon, and David
Eyers. Information Flow Audit for PaaS Clouds. In Proceedings of the
2016 IEEE International Conference on Cloud Engineering (IC2E),
pages 42–51. IEEE, 2016.

[PSM09] Siani Pearson, Yun Shen, and Miranda Mowbray. A Privacy Man-
ager for Cloud Computing. In Proceedings of the First International
Conference on Cloud Computing (CloudCom), pages 90–106. Springer,
2009.

[PTPS14] Pablo Picazo-Sanchez, Juan E. Tapiador, Pedro Peris-Lopez, and
Guillermo Suarez-Tangil. Secure Publish-Subscribe Protocols for
Heterogeneous Medical Wireless Body Area Networks. Sensors,
14(12):22619–22642, 2014.

[PUK+11] Ingmar Poese, Steve Uhlig, Mohamed Ali Kaafar, Benoit Donnet, and
Bamba Gueye. IP Geolocation Databases: Unreliable? ACM SIG-
COMM Computer Communication Review, 41(2):53–56, 2011.

[Pul15] John Patrick Pullen. Where Did Cloud Computing Come From,
Anyway? http://time.com/collection-post/3750915/cloud-
computing-origin-story/, 2015. [Online, accessed 2018-07-01].

Bibliography 285

[QG12] Han Qi and Abdullah Gani. Research on Mobile Cloud Computing: Re-
view, Trend and Perspectives. In Proceedings of the 2012 Second Inter-
national Conference on Digital Information and Communication Tech-
nology and it’s Applications (DICTAP), pages 195–202. IEEE, 2012.

[RA14] Lee Rainie and Janna Anderson. The Future of Privacy. Pew Research
Center, 2014.

[Rad16] The Radicati Group, Inc. Email Statistics Report, 2016–2020 (Execu-
tive Summary), 2016.

[RBM16] Christian David Gómez Romero, July Katherine Díaz Barriga, and José
Ignacio Rodríguez Molano. Big data meaning in the architecture of IoT
for smart cities. In Proceedings of the First International Conference on
Data Mining and Big Data (DMBD), pages 457–465. Springer, 2016.

[RDGT08] Robbert van Renesse, Dan Dumitriu, Valient Gough, and Chris
Thomas. Efficient Reconciliation and Flow Control for Anti-entropy
Protocols. In Proceedings of the 2nd Workshop on Large-Scale Dis-
tributed Systems and Middleware (LADIS), pages 6:1–6:7. ACM, 2008.

[Res01] Peter W. Resnick. Internet Message Format. Request for Comments
2822, Internet Engineering Task Force, 2001.

[RF06] Anirudh Ramachandran and Nick Feamster. Understanding the
Network-level Behavior of Spammers. In Proceedings of the 2006 Con-
ference on Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM), pages 291–302. ACM, 2006.

[RFVE11] Thorsten Ries, Volker Fusenig, Christian Vilbois, and Thomas Engel.
Verification of Data Location in Cloud Networking. In Proceedings of
the 2011 Fourth IEEE International Conference on Utility and Cloud
Computing (UCC), pages 439–444. IEEE, 2011.

[RG10] Karen Renaud and Dora Gálvez-Cruz. Privacy: Aspects, Definitions
and a Multi-Faceted Privacy Preservation Approach. In Proceedings
of the 2010 Information Security for South Africa Conference (ISSA),
pages 1–8. IEEE, 2010.

[RGS+12] Tilmann Rabl, Sergio Gómez-Villamor, Mohammad Sadoghi, Victor
Muntés-Mulero, Hans-Arno Jacobsen, and Serge Mankovskii. Solving
Big Data Challenges for Enterprise Application Performance Manage-
ment. Proceedings of the VLDB Endowment, 5(12):1724–1735, 2012.

[Rig17] RightScale, Inc. RightScale 2017 State of the Cloud Report, 2017.

[RJSP16] Roland van Rijswijk-Deij, Mattijs Jonker, Anna Sperotto, and Aiko
Pras. A High-Performance, Scalable Infrastructure for Large-Scale Ac-
tive DNS Measurements. IEEE Journal on Selected Areas in Commu-
nications, 34(6):1877–1888, 2016.

286 Bibliography

[RKB+13] Scott Ruoti, Nathan Kim, Ben Burgon, Timothy van der Horst, and
Kent Seamons. Confused Johnny: When Automatic Encryption Leads
to Confusion and Mistakes. In Proceedings of the Ninth Symposium on
Usable Privacy and Security (SOUPS), pages 5:1–5:12. ACM, 2013.

[RKW+10] Carlos Oberdan Rolim, Fernando Luiz Koch, Carlos Becker Westphall,
Jorge Werner, Armando Fracalossi, and Giovanni Schmitt Salvador. A
Cloud Computing Solution for Patient’s Data Collection in Health Care
Institutions. In Proceedings of the Second International Conference on
eHealth, Telemedicine, and Social Medicine (ETELEMED), pages 95–
99. IEEE, 2010.

[RKW12] Franziska Roesner, Tadayoshi Kohno, and David Wetherall. Detecting
and Defending Against Third-Party Tracking on the Web. In Proceed-
ings of the 9th USENIX Conference on Networked Systems Design and
Implementation (NSDI). USENIX, 2012.

[RMX+15] Ulrich Rührmair, J. L. Martinez-Hurtado, Xiaolin Xu, Christian Kraeh,
Christian Hilgers, Dima Kononchuk, Jonathan J. Finley, and Wayne P.
Burleson. Virtual Proofs of Reality and their Physical Implementation.
In Proceedings of the 2015 IEEE Symposium on Security and Privacy
(SP), pages 70–85. IEEE, 2015.

[Rob09] William Jeremy Robison. Free at What Cost?: Cloud Computing Pri-
vacy Under the Stored Communications Act. The Georgetown Law
Journal, 98:1195–1239, 2009.

[Ros12] Jeffrey Rosen. The Right to Be Forgotten. Stanford Law Review Online,
64:88–92, 2012.

[RRL+16] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout, and
David Choffnes. ReCon: Revealing and Controlling PII Leaks in Mo-
bile Network Traffic. In Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys),
pages 361–374. ACM, 2016.

[RTSS09] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Sav-
age. Hey, You, Get off of My Cloud: Exploring Information Leak-
age in Third-party Compute Clouds. In Proceedings of the 16th ACM
Conference on Computer and Communications Security (CCS), pages
199–212. ACM, 2009.

[RVS+16] Abbas Razaghpanah, Narseo Vallina-Rodriguez, Srikanth Sundaresan,
Christian Kreibich, Phillipa Gill, Mark Allman, and Vern Paxson.
Haystack: A Multi-Purpose Mobile Vantage Point in User Space. arXiv
preprint arXiv:1510.01419 [cs.NI], 2016.

[Rya14] Mark D. Ryan. Enhanced Certificate Transparency and End-to-End
Encrypted Mail. In Proceedings of the 21st Annual Network and Dis-
tributed System Security Symposium (NDSS). The Internet Society,
2014.

Bibliography 287

[RZO+17] Lukas Rupprecht, Rui Zhang, Bill Owen, Peter Pietzuch, and Dean
Hildebrand. SwiftAnalytics: Optimizing Object Storage for Big Data
Analytics. In Proceedings of the 2017 IEEE International Conference
on Cloud Engineering (IC2E), pages 245–251. IEEE, 2017.

[San06] Salvatore Sanfilippo. hping. http://www.hping.org/, 2006. [Online,
accessed 2018-07-01].

[San16a] Sandvine. 2016 Global Internet Phenomena – Latin America & North
America, 2016.

[San16b] Mary Peyton Sanford. Mail Analyzer: Analyzing cloud-based email
use. Internship report (Undergraduate Research Opportunities Pro-
gram), RWTH Aachen University and University of Pennsylvania, July
2016.

[SBC+14] Jatinder Singh, Jean Bacon, Jon Crowcroft, Anil Madhavapeddy,
Thomas F. J.-M. Pasquier, W. Kuan Hon, and Christopher Millard.
Regional clouds: technical considerations. Technical Report UCAM-
CL-TR-863, University of Cambridge, Computer Laboratory, 2014.

[SBHD17] Hossein Shafagh, Lukas Burkhalter, Anwar Hithnawi, and Simon
Duquennoy. Towards Blockchain-based Auditable Storage and Shar-
ing of IoT Data. In Proceedings of the 2017 Cloud Computing Security
Workshop (CCSW), pages 45–50. ACM, 2017.

[SCF+15] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis,
Marcus Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. VC3:
Trustworthy Data Analytics in the Cloud Using SGX. In Proceedings
of the 2015 IEEE Symposium on Security and Privacy (SP), pages
38–54. IEEE, 2015.

[Sch15] Sascha Schmerling. A Space and Processing Efficient Cloud Privacy
Policy Language. Master’s thesis, RWTH Aachen University, December
2015.

[SCR+17] Gang Sun, Victor Chang, Muthu Ramachandran, Zhili Sun, Gangmin
Li, Hongfang Yu, and Dan Liao. Efficient location privacy algorithm for
internet of things (iot) services and applications. Journal of Network
and Computer Applications, 89:3–13, 2017.

[SCZ+16] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge
Computing: Vision and Challenges. IEEE Internet of Things Journal,
3(5):637–646, 2016.

[SD16] Weisong Shi and Schahram Dustdar. The Promise of Edge Computing.
Computer, 49(5):78–81, 2016.

[SDW12] Shashi Shekhar, Michael Dietz, and Dan S. Wallach. AdSplit: Separat-
ing Smartphone Advertising from Applications. In Proceedings of the
21st USENIX Security Symposium, pages 28–28. USENIX, 2012.

288 Bibliography

[SDX11] H. Jeff Smith, Tamara Dinev, and Heng Xu. Information Privacy Re-
search: An Interdisciplinary Review. MIS Quarterly, 35(4):989–1016,
2011.

[Sea18] Seafile – Open Source File Sync and Share Software. https://www.
seafile.com/, 2018. [Online, accessed 2018-07-01].

[See13] Marc Seebold. Privacy-aware Operations on Encrypted Sensor Data in
the Cloud. Bachelor’s thesis, RWTH Aachen University, March 2013.

[Seu15] Annika Seufert. Load Balancing for Data Handling-aware Distributed
Databases. Bachelor’s thesis, RWTH Aachen University, June 2015.

[SG16] Mariusz Slabicki and Krzysztof Grochla. Performance Evaluation of
CoAP, SNMP and NETCONF Protocols in Fog Computing Architec-
ture. In Proceedings of the 2016 IEEE/IFIP Network Operations and
Management Symposium (NOMS), pages 1315–1319. IEEE, 2016.

[SH15] Yihang Song and Urs Hengartner. PrivacyGuard: A VPN-based Plat-
form to Detect Information Leakage on Android Devices. In Proceed-
ings of the 5th Annual ACM CCS Workshop on Security and Privacy
in Smartphones and Mobile Devices (SPSM), pages 15–26. ACM, 2015.

[SHH+18] Martin Serror, Martin Henze, Sacha Hack, Marko Schuba, and Klaus
Wehrle. Towards In-Network Security for Smart Homes. In Proceedings
of the International Conference on Availability, Reliability and Security
(ARES). ACM, 2018.

[SHI+13] Benjamin Satzger, Waldemar Hummer, Christian Inzinger, Philipp
Leitner, and Schahram Dustdar. Winds of Change: From Vendor Lock-
In to the Meta Cloud. IEEE Internet Computing, 17(1):69–73, 2013.

[SHKV14] Gianluca Stringhini, Oliver Hohlfeld, Christopher Kruegel, and Gio-
vanni Vigna. The Harvester, the Botmaster, and the Spammer: On
the Relations Between the Different Actors in the Spam Landscape. In
Proceedings of the 9th ACM Symposium on Information, Computer and
Communications Security (ASIACCS), pages 353–364. ACM, 2014.

[Sil13] Karine e Silva. Europe’s fragmented approach towards cyber security.
Internet Policy Review, 2(4), 2013.

[Sim91] Herbert A. Simon. Bounded Rationality and Organizational Learning.
Organization Science, 2(1):125–134, 1991.

[SK99] Bruce Schneier and John Kelsey. Secure Audit Logs to Support Com-
puter Forensics. ACM Transactions on Information and System Secu-
rity, 2(2):159–176, 1999.

[SKS15] Suranga Seneviratne, Harini Kolamunna, and Aruna Seneviratne. A
Measurement Study of Tracking in Paid Mobile Applications. In Pro-
ceedings of the 8th ACM Conference on Security & Privacy in Wireless
and Mobile Networks (WiSec), pages 7:1–7:6. ACM, 2015.

Bibliography 289

[Sky16] Skyhigh. Cloud Adoption & Risk Report Q4 2016, 2016.

[SM12] Andreas Schaad and Anja Monakva. Annotating Business Processes
with Usage Controls. In Proceedings of the WWW 2012 workshop on
Data Usage Management on the Web (DUMW), pages 23–28. Technical
University of Munich, 2012.

[Smi12] Ian G. Smith, editor. The Internet of Things 2012 – New Horizons.
IERC, 2012.

[SMS11] Sumit Sanghrajka, Nilesh Mahajan, and Radu Sion. Cloud Perfor-
mance Benchmark Series: Network Performance – Amazon EC2, ver.
0.2. Cloud Commons Online, 2011.

[SMS13] Josef Spillner, Johannes Müller, and Alexander Schill. Creating op-
timal cloud storage systems. Future Generation Computer Systems,
29(4):1062–1072, 2013.

[SMSD10] Dominik Schatzmann, Wolfgang Mühlbauer, Thrasyvoulos Spyropou-
los, and Xenofontas Dimitropoulos. Digging into HTTPS: Flow-based
Classification of Webmail Traffic. In Proceedings of the 10th ACM SIG-
COMM Conference on Internet Measurement (IMC), pages 322–327.
ACM, 2010.

[Sol06] Daniel J. Solove. A Taxonomy of Privacy. University of Pennsylvania
Law Review, 154(3):477–560, 2006.

[SOX02] United States Congress. Sarbanes-Oxley Act (SOX). Pub.L. 107–204,
116 Stat. 745, 2002.

[SPB15] Jatinder Singh, Thomas F. J.-M. Pasquier, and Jean Bacon. Securing
Tags to Control Information Flows within the Internet of Things. In
Proceedings of the 2015 International Conference on Recent Advances
in Internet of Things (RIoT), pages 1–6. IEEE, 2015.

[SPB+16] Jatinder Singh, Thomas F. J.-M. Pasquier, Jean Bacon, Hajoon Ko,
and David Eyers. Twenty Security Considerations for Cloud-Supported
Internet of Things. IEEE Internet of Things Journal, 3(3):269–284,
2016.

[SPP01] Dawn Song, Adrian Perrig, and Doantam Phan. AGVI — Automatic
Generation, Verification, and Implementation of Security Protocols. In
Proceedings of the 13th International Conference on Computer Aided
Verification (CAV), pages 241–245. Springer, 2001.

[SRLO15] Johannes Sametinger, Jerzy Rozenblit, Roman Lysecky, and Peter Ott.
Security Challenges for Medical Devices. Communications of the ACM,
58(4):74–82, 2015.

290 Bibliography

[SS75] Jerome H. Saltzer and Michael D. Schroeder. The Protection of Infor-
mation in Computer Systems. Proceedings of the IEEE, 63(9):1278–
1308, 1975.

[SSFS12] Dawn Song, Elaine Shi, Ian Fischer, and Umesh Shankar. Cloud Data
Protection for the Masses. Computer, 45(1), 2012.

[SSL12] Smitha Sundareswaran, Anna Squicciarini, and Dan Lin. Ensuring Dis-
tributed Accountability for Data Sharing in the Cloud. IEEE Trans-
actions on Dependable and Secure Computing, 9(4):556–568, 2012.

[SSY+16] Chad Spensky, Jeffrey Stewart, Arkady Yerukhimovich, Richard Shay,
Ari Trachtenberg, Rick Housley, and Robert K. Cunningham. SoK:
Privacy on Mobile Devices – It’s Complicated. Proceedings on Privacy
Enhancing Technologies (PoPETS), 2016(3):96–116, 2016.

[Sta14] John A. Stankovic. Research Directions for the Internet of Things.
IEEE Internet of Things Journal, 1(1):3–9, 2014.

[STW12] Robin Seggelmann, Michael Tuexen, and Michael Glenn Williams.
Transport Layer Security (TLS) and Datagram Transport Layer Se-
curity (DTLS) Heartbeat Extension. Request for Comments 6520, In-
ternet Engineering Task Force, 2012.

[SV10] Pierangela Samarati and Sabrina De Capitani di Vimercati. Data Pro-
tection in Outsourcing Scenarios: Issues and Directions. In Proceedings
of the 5th ACM Symposium on Information, Computer and Commu-
nications Security (ASIACSS), pages 1–14. ACM, 2010.

[SW13] Michael Stonebraker and Ariel Weisberg. The VoltDB Main Memory
DBMS. IEEE Data Engineering Bulletin, 36(2):21–27, 2013.

[SW14] Ivan Stojmenovic and Sheng Wen. The fog computing paradigm: Sce-
narios and security issues. In Proceedings of the 2014 Federated Confer-
ence on Computer Science and Information Systems (FedCSIS), pages
1–8. IEEE, 2014.

[Swe00] Latanya Sweeney. Simple Demographics Often Identify People
Uniquely. Data Privacy Working Paper 3, Carnegie Mellon Univer-
sity, 2000.

[Swe02] Latanya Sweeney. k-anonymity: A model for protecting privacy. Inter-
national Journal of Uncertainty, Fuzziness and Knowledge-Based Sys-
tems, 10(5):557–570, 2002.

[SWL16] Mingshen Sun, Tao Wei, and John Lui. TaintART: A Practical Multi-
level Information-Flow Tracking System for Android RunTime. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), pages 331–342. ACM, 2016.

Bibliography 291

[SWW15] Ahmad-Reza Sadeghi, Christian Wachsmann, and Michael Waidner.
Security and Privacy Challenges in Industrial Internet of Things. In
Proceedings of the 52nd Annual Design Automation Conference (DAC),
pages 54:1–54:6. ACM, 2015.

[SWZC16] Quirin Scheitle, Matthias Wachs, Johannes Zirngibl, and Georg Carle.
Analyzing Locality of Mobile Messaging Traffic using the MATAdOR
Framework. In Proceedings of the 17th International Conference on
Passive and Active Measurement (PAM), pages 190–202. Springer,
2016.

[SYC04] Richard T. Snodgrass, Shilong Stanley Yao, and Christian Collberg.
Tamper Detection in Audit Logs. In Proceedings of the Thirtieth In-
ternational Conference on Very Large Data Bases (VLDB), pages 504–
515. VLDB Endowment, 2004.

[TCG07] Trusted Computing Group. TCG Specification Architecture Overview.
Specification Revision 1.4, 2007.

[TCN+14] Danan Thilakanathan, Shiping Chen, Surya Nepal, Rafael Calvo, and
Leila Alem. A platform for secure monitoring and sharing of generic
health data in the Cloud. Future Generation Computer Systems,
35:102–113, 2014.

[TD17] Alin Tomescu and Srinivas Devadas. Catena: Efficient Non-
equivocation via Bitcoin. In Proceedings of the 2017 IEEE Symposium
on Security and Privacy (SP), pages 393–409. IEEE, 2017.

[TGG+12] Amin Tootoonchian, Sergey Gorbunov, Yashar Ganjali, Martin
Casado, and Rob Sherwood. On Controller Performance in Software-
Defined Networks. In Proceedings of the 2nd USENIX Workshop on
Hot Topics in Management of Internet, Cloud, and Enterprise Net-
works and Services (Hot-ICE). USENIX, 2012.

[TJA10] Hassan Takabi, James B.D. Joshi, and Gail-Joon Ahn. Security and
Privacy Challenges in Cloud Computing Environments. IEEE Security
& Privacy, 8(6):24–31, 2010.

[TLL16] Cory Thoma, Adam J. Lee, and Alexandros Labrinidis. PolyStream:
Cryptographically Enforced Access Controls for Outsourced Data
Stream Processing. In Proceedings of the 21st ACM on Symposium on
Access Control Models and Technologies (SACMAT), pages 227–238.
ACM, 2016.

[TM11] Romuald Thion and Daniel Le Metayer. FLAVOR: A Formal Language
for a Posteriori Verification of Legal Rules. In Proceedings of the 2011
IEEE International Symposium on Policies for Distributed Systems and
Networks (POLICY), pages 1–8. IEEE, 2011.

292 Bibliography

[TPPG13] Marianthi Theoharidou, Nick Papanikolaou, Siani Pearson, and Dim-
itris Gritzalis. Privacy Risk, Security, Accountability in the Cloud. In
Proceedings of the 2013 IEEE 5th International Conference on Cloud
Computing Technology and Science (CloudCom), pages 177–184. IEEE,
2013.

[Twi15] Twissandra. https://github.com/twissandra/twissandra/, 2015.
[Online, accessed 2018-07-01].

[Udo01] Godwin J. Udo. Privacy and security concerns as major barriers for
e-commerce: a survey study. Information Management & Computer
Security, 9(4):165–174, 2001.

[UN48] United Nations General Assembly. The Universal Declaration of Hu-
man Rights. General Assembly Resolution 217 A, 1948.

[VEM+15] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Aastha Mehta, Deepak
Garg, Peter Druschel, Rodrigo Rodrigues, Johannes Gehrke, and Ans-
ley Post. Guardat: Enforcing data policies at the storage layer. In
Proceedings of the Tenth European Conference on Computer Systems
(EuroSys), pages 13:1–13:16. ACM, 2015.

[VMC02] John Viega, Matt Messier, and Pravir Chandra. Network Security with
OpenSSL: Cryptography for Secure Communications. O’Reilly, 2002.

[VR14] Luis M. Vaquero and Luis Rodero-Merino. Finding your Way in the
Fog: Towards a Comprehensive Definition of Fog Computing. ACM
SIGCOMM Computer Communication Review, 44(5):27–32, 2014.

[VSF+12] Narseo Vallina-Rodriguez, Jay Shah, Alessandro Finamore, Yan
Grunenberger, Konstantina Papagiannaki, Hamed Haddadi, and Jon
Crowcroft. Breaking for Commercials: Characterizing Mobile Adver-
tising. In Proceedings of the 2012 Internet Measurement Conference
(IMC), pages 343–356. ACM, 2012.

[VSR+16] Narseo Vallina-Rodriguez, Srikanth Sundaresan, Abbas Razaghpanah,
Rishab Nithyanand, Mark Allman, Christian Kreibich, and Phillipa
Gill. Tracking the Trackers: Towards Understanding the Mobile Ad-
vertising and Tracking Ecosystem. arXiv preprint arXiv:1609.07190
[cs.CY], 2016.

[Wal96] John Walker. HotBits: Genuine random numbers, generated by ra-
dioactive decay, 1996.

[Wal16] Matthew Wall. Can we trust cloud providers to keep our data safe?
http://www.bbc.com/news/business-36151754, 2016. [Online, ac-
cessed 2018-07-01].

[WB90] Samuel D. Warren and Louis D. Brandeis. The right to privacy. Harvard
Law Review, 4(5):193–220, 1890.

Bibliography 293

[WBDS04] Brent R. Waters, Dirk Balfanz, Glenn Durfee, and Diana K. Smetters.
Building an Encrypted and Searchable Audit Log. In Proceedings of
the Network and Distributed System Security Symposium (NDSS). The
Internet Society, 2004.

[WBMM06] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and Carlos Maltzahn.
CRUSH: Controlled, Scalable, Decentralized Placement of Replicated
Data. In Proceedings of the 2006 ACM/IEEE Conference on Super-
computing (SC). ACM, 2006.

[WC16] Edward Wang and Richard Chow. What Can I Do Here? IoT Ser-
vice Discovery in Smart Cities. In Proceedings of the 2016 IEEE In-
ternational Conference on Pervasive Computing and Communication
Workshops (PerCom Workshops), pages 1–6. IEEE, 2016.

[WDB14] Dale Willis, Arkodeb Dasgupta, and Suman Banerjee. ParaDrop: A
Multi-tenant Platform to Dynamically Install Third Party Services on
Wireless Gateways. In Proceedings of the 9th ACM Workshop on Mo-
bility in the Evolving Internet Architecture (MobiArch), pages 43–48.
ACM, 2014.

[WDL13] Kevin Wiesner, Florian Dorfmeister, and Claudia Linnhoff-Popien.
Privacy-Preserving Calibration for Participatory Sensing. In Proceed-
ings of the 10th International Conference on Mobile and Ubiquitous
Systems: Computing, Networking, and Services (MobiQuitous), pages
276–288. Springer, 2013.

[Wes67] Alan Westin. Privacy and Freedom. Atheneum, 1967.

[Wes03] Alan F. Westin. Social and Political Dimensions of Privacy. Journal
of Social Issues, 59(2):431–453, 2003.

[WGG10] Klaus Wehrle, Mesut Günes, and James Gross. Modeling and Tools for
Network Simulation. Springer, 2010.

[WGNF12] Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos.
ProfileDroid: Multi-layer Profiling of Android Applications. In Proceed-
ings of the 18th Annual International Conference on Mobile Computing
and Networking (Mobicom), pages 137–148. ACM, 2012.

[WGR05] Klaus Wehrle, Stefan Götz, and Simon Rieche. Distributed Hash Ta-
bles. In Ralf Steinmetz and Klaus Wehrle, editors, Peer-to-Peer Sys-
tems and Applications, chapter 7, pages 79–93. Springer, 2005.

[Whi71] James E. White. Network Specifications for Remote Job Entry and
Remote Job Output Retrieval at UCSB. Request for Comments 105,
Internet Engineering Task Force, 1971.

[Wik16] WikiLeaks. http://wikileaks.org/, 2016. [Online, accessed 2016-
10-13].

294 Bibliography

[WLFW06] Raymond Chi-Wing Wong, Jiuyong Li, Ada Wai-Chee Fu, and
Ke Wang. (α, K)-anonymity: An Enhanced K-anonymity Model for
Privacy Preserving Data Publishing. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), pages 754–759. ACM, 2006.

[WMF13] Tobias Wüchner, Steffen Müller, and Robin Fischer. Compliance-
Preserving Cloud Storage Federation Based on Data-Driven Usage
Control. In Proceedings of the 2013 IEEE 5th International Confer-
ence on Cloud Computing Technology and Science (CloudCom), pages
285–288. IEEE, 2013.

[Wol14] Benedikt Wolters. Distributed Authorization Management for Secure
Sensor Data in the Cloud. Bachelor’s thesis, RWTH Aachen University,
March 2014.

[WS14] Melanie Willett and Rossouw Von Solms. Cloud-based Email Adoption
at Higher Education Institutions in South Africa. Journal of Interna-
tional Technology and Information Management, 23(2):17–29, 2014.

[WSA+12] Gaven J. Watson, Reihaneh Safavi-Naini, Mohsen Alimomeni,
Michael E. Locasto, and Shivaramakrishnan Narayan. LoSt: Loca-
tion Based Storage. In Proceedings of the 2012 ACM Cloud Computing
Security Workshop (CCSW), pages 59–70. ACM, 2012.

[WSC17] Matthias Wachs, Quirin Scheitle, and Georg Carle. Push Away Your
Privacy: Precise User Tracking Based on TLS Client Certificate Au-
thentication. In Proceedings of the 2017 Network Traffic Measurement
and Analysis Conference (TMA). IEEE, 2017.

[WWRL10] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-
Preserving Public Auditing for Data Storage Security in Cloud Com-
puting. In Proceedings of the 29th IEEE International Conference on
Computer Communications (INFOCOM), pages 1–9. IEEE, 2010.

[XEG+11] Qiang Xu, Jeffrey Erman, Alexandre Gerber, Zhuoqing Mao, Jeffrey
Pang, and Shobha Venkataraman. Identifying Diverse Usage Behaviors
of Smartphone Apps. In Proceedings of the 2011 ACM SIGCOMM
Conference on Internet Measurement Conference (IMC), pages 329–
344. ACM, 2011.

[XYA+07] Yinglian Xie, Fang Yu, Kannan Achan, Eliot Gillum, Moises Gold-
szmidt, and Ted Wobber. How Dynamic Are IP Addresses? In Pro-
ceedings of the 2007 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications (SIGCOMM),
pages 301–312. ACM, 2007.

[YDAJ15] Kenji Yoshigoe, Wei Dai, Melissa Abramson, and Alexander Jacobs.
Overcoming Invasion of Privacy in Smart Home Environment with Syn-
thetic Packet Injection. In Proceedings of the 2015 TRON Symposium
(TRONSHOW), pages 1–7. IEEE, 2015.

Bibliography 295

[YL11] Jaewon Yang and Jure Leskovec. Patterns of Temporal Variation in
Online Media. In Proceedings of the Fourth ACM International Confer-
ence on Web Search and Data Mining (WSDM), pages 177–186. ACM,
2011.

[YN09] Attila Altay Yavuz and Peng Ning. BAF: An Efficient Publicly Verifi-
able Secure Audit Logging Scheme for Distributed Systems. In Proceed-
ings of the 2009 Annual Computer Security Applications Conference
(ACSAC), pages 219–228. IEEE, 2009.

[YPLL14] Hui-Shyong Yeo, Xiao-Shen Phang, Hoon-Jae Lee, and Hyotaek Lim.
Leveraging client-side storage techniques for enhanced use of multi-
ple consumer cloud storage services on resource-constrained mobile de-
vices. Journal of Network and Computer Applications, 43:142–156,
2014.

[YWRL10] Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou. Achieving Se-
cure, Scalable, and Fine-grained Data Access Control in Cloud Com-
puting. In Proceedings of the 29th IEEE International Conference on
Computer Communications (INFOCOM), pages 534–542. IEEE, 2010.

[YYZ+13] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and
X. Sean Wang. AppIntent: Analyzing Sensitive Data Transmission
in Android for Privacy Leakage Detection. In Proceedings of the 2013
ACM SIGSAC Conference on Computer and Communications Security
(CCS), pages 1043–1054. ACM, 2013.

[ZB11] Shehnila Zardari and Rami Bahsoon. Cloud Adoption: A Goal-oriented
Requirements Engineering Approach. In Proceedings of the 2nd In-
ternational Workshop on Software Engineering for Cloud Computing
(SECLOUD), pages 29–35. ACM, 2011.

[ZDH13] Shams Zawoad, Amit Kumar Dutta, and Ragib Hasan. SecLaaS: Se-
cure Logging-as-a-service for Cloud Forensics. In Proceedings of the 8th
ACM SIGSAC Symposium on Information, Computer and Communi-
cations Security (ASIACCS), pages 219–230. ACM, 2013.

[ZGS03] Shuheng Zhou, Gregory R Ganger, and Peter Alfons Steenkiste.
Location-based Node IDs: Enabling Explicit Locality in DHTs. Tech-
nical Report CMU-CS-03-171, School of Computer Science, Carnegie
Mellon University, 2003.

[ZGW14] Jan Henrik Ziegeldorf, Oscar Garcia Morchon, and Klaus Wehrle. Pri-
vacy in the Internet of Things: Threats and Challenges. Security and
Communication Networks, 7(12):2728–2742, 2014.

[ZHHW15] Jan Henrik Ziegeldorf, Martin Henze, René Hummen, and Klaus
Wehrle. Comparison-based Privacy: Nudging Privacy in Social Media
(Position Paper). In Proceedings of the 10th International Workshop
on Data Privacy Management (DPM), pages 226–234. Springer, 2015.

296 Bibliography

[Zig12] ZigBee Alliance. ZigBee Specification. ZigBee Document 053474r20,
2012.

[Zig13] ZigBee Alliance. Smart Energy Profile 2 Application Protocol Stan-
dard. ZigBee Public Document 13-0200-00, 2013.

[Zim80] Hubert Zimmermann. OSI Reference Model – The ISO Model of Ar-
chitecture for Open Systems Interconnection. IEEE Transactions on
Communications, 28(4):425–432, 1980.

[ZMHW15] Jan Henrik Ziegeldorf, Jan Metzke, Martin Henze, and Klaus Wehrle.
Choose Wisely: A Comparison of Secure Two-Party Computation
Frameworks. In Proceedings of the 2015 IEEE Security and Privacy
Workshops (SPW), pages 198–205. IEEE, 2015.

[ZNP15] Guy Zyskind, Oz Nathan, and Alex ‘Sandy’ Pentland. Decentralizing
Privacy: Using Blockchain to Protect Personal Data. In Proceedings
of the 2015 IEEE Security and Privacy Workshops (SPW), pages 180–
184. IEEE, 2015.

[ZPH+17] Jan Henrik Ziegeldorf, Jan Pennekamp, David Hellmanns, Felix
Schwinger, Ike Kunze, Martin Henze, Jens Hiller, Roman Matzutt,
and Klaus Wehrle. BLOOM: BLoom filter based oblivious outsourced
matchings. BMC Medical Genomics, 10(Suppl 2):29–42, 2017.

[ZSW13] Frances Zhang, Fuming Shih, and Daniel Weitzner. No Surprises: Mea-
suring Intrusiveness of Smartphone Applications by Detecting Objec-
tive Context Deviations. In Proceedings of the 12th ACM Workshop on
Privacy in the Electronic Society (WPES), pages 291–296. ACM, 2013.

[ZVHW14] Jan Henrik Ziegeldorf, Nicolai Viol, Martin Henze, and Klaus Wehrle.
POSTER: Privacy-preserving Indoor Localization. In Poster Session
of the 7th ACM Conference on Security and Privacy in Wireless and
Mobile Networks (WiSec), 2014.

[ZZ11] Xiao Ming Zhang and Ning Zhang. An Open, Secure and Flexible Plat-
form Based on Internet of Things and Cloud Computing for Ambient
Aiding Living and Telemedicine. In Proceedings of the 2011 Inter-
national Conference on Computer and Management (CAMAN), pages
1–4. IEEE, 2011.

