
Advancing Network Monitoring with Packet-Level
Records and Selective Flow Aggregation

Ina Berenice Fink∗, Ike Kunze∗, Pascal Hein∗, Jan Pennekamp∗, Benjamin Standaert§, Klaus Wehrle∗, and Jan Rüth∗
∗Communication and Distributed Systems, RWTH Aachen University, Germany

§Washington University in St. Louis, Missouri, United States
{fink, kunze, hein, pennekamp, wehrle, rueth}@comsys.rwth-aachen.de · b.g.standaert@wustl.edu

© IEEE, 2025. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: TBD

Abstract—Due to its superior efficiency, network operators
frequently prefer flow monitoring over full packet captures.
However, packet-level information is crucial for the timely
and reliable detection, investigation, and mitigation of security
incidents. Currently, no solution effectively balances these two
contradicting approaches, forcing network operators to compro-
mise between efficiency and accuracy. In this paper, we thus
propose HybridMon, a hybrid solution that combines condensed
packet-level monitoring with selective flow-based aggregation to
strike a new balance between efficiency and accuracy. Operating
on the data plane of P4-programmable switches, HybridMon
enables fine-grained, practical, and flexible network monitoring
at Tbps speeds. We validate the effectiveness HybridMon through
extensive evaluations using Internet backbone and university
campus traffic traces, demonstrating its reliability and perfor-
mance in network forensics and intrusion detection contexts.
Our results show that HybridMon reliably monitors all flows
while reduing the output bandwidth to 12 % to 20 % compared
to packet monitoring when exporting standard features. Com-
plementing traditional flow monitoring, we further demonstrate
HybridMon’s potential to enhance intrusion detection.

Index Terms—Security Services, Control and Data Plane Pro-
grammability, Monitoring and Measurements

I. INTRODUCTION

Network monitoring serves as a vital data source for a
myriad of applications [1], including network forensics [2],
[3] and intrusion detection [4]. However, their operation is
challenged by growing network sizes, increasing the vulner-
ability surface [5], and performance demands of monitoring
solutions [6]. Simultaneously, cyberattacks become more so-
phisticated with deployments, scaling to state-level threats—
visible in the Russian invasion of Ukraine [7]—and tailored
to individual targets as became evident during the COVID-19
pandemic with contextual phishing and precise attacks against
health agencies and hospitals [8]. Therefore, today’s network
monitoring needs to fulfill two key requirements for effective
network security: (i) the ability to handle high traffic volumes
and (ii) the timely provision of comprehensive information for
detailed analysis.

Two major monitoring approaches exist: packet and flow
monitoring. Packet monitoring captures full packets, ensuring
maximum accuracy; however, today’s traffic volumes render it
largely impractical due to exceptional storage and processing
demands [9]. Flow monitoring poses an efficient alternative by
storing flow statistics in structured records [10]. While it re-

duces the load on network and subsequent storage and process-
ing components, it nowadays finds increasing use for intrusion
detection [11]–[14]. However, relying on flow monitoring for
network forensics and intrusion detection limits capabilities
and effectiveness due to its significantly lower accuracy [9],
[15]–[18], and delayed information availability [14].

Thus, network operators require new reliable approaches
that better balance the trade-off between accuracy and per-
formance. To this end, programmable networking devices
provide new opportunities for implementing efficient and
flexible monitoring [1]. Nonetheless, a broadly applicable
solution which balances accuracy and efficiency is still miss-
ing, with existing work primarily focusing on performant
network telemetry [19]–[25] and traffic monitoring [6], [26]–
[28], enhanced flow export [29]–[32], or specific (integrated)
security applications [14], [15], [33]–[36].

To close this gap, we propose HybridMon, a hybrid ap-
proach between packet and flow monitoring that leverages pro-
grammable P4-switches. Instead of full packets or aggregated
statistics, HybridMon exports a condensed and structured
record with selected packet-level information for every packet.
This approach minimizes overhead while preserving packet-
level accuracy, allowing for timely and detailed analysis.
Additionally, HybridMon incorporates multiple mechanisms to
reduce output and alleviate the load on subsequent components
without broadly decreasing accuracy. To this end, selective
aggregation enables the less accurate flow monitoring for less-
relevant (user-defined) shares of traffic, while fine-granular fil-
tering allows irrelevant traffic to be excluded upfront. Intrusion
Detection Systems (IDSs) can also automatically feed back
temporary filter rules, e.g., to exclude malicious high-volume
traffic from monitoring once detected. Lastly, HybridMon
offers high deployability as it runs on commercial-off-the-shelf
hardware and can either replace existing switches in-line or be
deployed off-path. It handles up to 3.2 Tbps of input per device
and provides standardized output compatible with common
analysis tools (e.g., nfdump [37]).
Contributions. Our main contributions in this paper are:

• We identify the limitations of traditional network monitoring
for various network applications, such as intrusion detection,
and derive concrete requirements to fill the gap.

• Addressing these requirements, our P4-based hybrid ap-

proach HybridMon efficiently exports customizable packet
and flow information in the common IPFIX format.

• Our extensive evaluation of HybridMon demonstrates that
operators can benefit from (i) accurate and custom output
for security-related tasks, (ii) reliable monitoring, even with
heterogeneous traffic patterns, and (iii) increased attack
detection compared to traditional flow monitoring.

Open Science Statement. We open-source our implementa-
tion [38] under the GPLv3 license.

II. TRADITIONAL NETWORK MONITORING AND THE
ROAD AHEAD

The reliability and success of network security applications
directly depend on the quality and quantity of their input [39],
provided by monitoring systems. In this context, we first exam-
ine the trade-offs between packet- and flow-based monitoring.
We then derive requirements for the design of new solutions.

A. Comparison of Packet and Flow Monitoring

We assess the content, use for attack detection, and perfor-
mance of today’s prevalent approaches in the following.
Content. While packet monitoring involves full packet cap-
ture, flow monitoring exports aggregated statistics of multiple
packets from the same flow in the form of flow records,
which are gathered by flow collectors [10]. As a result, flow
records lead to the loss of individual packet characteristics.
Furthermore, they typically include only information up to
the transport layer. The structure of flow records and their
detailed transmission are defined by flow export protocols such
as NetFlow [40] or IPFIX [41] which serve as input for a broad
range of general-purpose analysis tools [37], [42], [43].
Attack Detection. Packet monitoring offers maximum infor-
mation gain and allows for arbitrary processing, including deep
packet inspection (DPI), which facilitates flexible analysis of
all (unencrypted) content up to the application layer [44].
Thus, packet monitoring provides the best start for attack
detection. In turn, flow monitoring is well applicable for
detecting numerically striking, e.g., volumetric, attacks, but is
generally less effective at identifying more subtle threats, such
as slow or semantic attacks [9], [15]. These include low-rate
DoS attacks characterized by periodic short bursts of traffic but
low average volume [45]. Recent research further indicates
that the performance of ML-based intrusion detection can
suffer from the coarse granularity of flow-based statistics [16],
[17] while packet-level information, such as packet sizes or
inter-arrival times, can significantly enhance the accuracy of
novelty detection [18]. Lastly, aggregating packets into flows
delays the forwarding of monitored data, potentially resulting
in delays of several minutes in attack detection [14].
Performance. Depending on the network, packet monitoring
is not always feasible [9] due to its storage and processing
requirements. Additionally, resources may be wasted if packets
lack usable payloads due to encryption. Flow monitoring
substantially reduces the load on subsequent network, stor-
age, and processing components compared to packet moni-
toring [10], but it requires additional processing power for

flow metering and export. Furthermore, flow-based monitoring
solutions struggle with short-lived flows [9] and high volumes
of minimum-size packets [46], risking further information loss.

Given the shortcomings of packet and flow monitoring,
network operators would significantly benefit from hybrid
approaches that address their needs.

B. Toward Hybrid Network Monitoring

Based on the weaknesses of packet and flow monitoring,
we derive precise requirements for hybrid solutions:
R1 Deployment: Typically, network operators already have

elaborate network infrastructures and analysis pipelines in
use in which new monitoring systems should easily inte-
grate. Providing output in a standardized and structured
format, e.g., via IPFIX flow records, facilitates universal
use and seamless processing at subsequent components.

R2 Output: Accurate packet-level information is critical for
attack detection and information above the transport layer
can offer additional value [11], [47]. Therefore, solutions
should encompass header fields of individual packets and,
if unencrypted, customizable application layer informa-
tion such as request types or error codes depending on the
network and its applications. Furthermore, timely provi-
sion of the monitored information to security applications
is vital for fast attack detection and reaction [14].

R3 Flexibility: Reliable operation of the monitoring system
and dependent security applications necessitates support
of high traffic volumes and abnormal traffic patterns
as well as optimized selection of monitored traffic to
decrease load. Adjustment of the monitored traffic at run-
time allows to proactively relieve all components from
benign [48] and adverse traffic after detection [14].

Next, we discuss related work in light of R1-R3.

III. RELATED WORK

Most related work targets the field of general-purpose
network monitoring and telemetry, focussing on performance.
Only a subset specifically addresses network security, e.g., by
tightly coupling monitoring to security applications.
General Network Monitoring. Various approaches aim to en-
hance network telemetry through hardware acceleration [19]–
[24], [26], [27], [49]. However, these approaches provide
network characteristics such as bandwidth and queue times,
not traffic information. Solutions for traffic monitoring ei-
ther seek to relieve existing flow exporters [29], [30] or
offer efficient flow export implementations on programmable
switches [31]. Consequently, these approaches either maintain
or further decrease flow monitoring accuracy. In contrast,
Castanheira et al. [50] utilize programmable switches for
custom monitoring with flow and packet metrics but restrict it
to heavy hitters to reduce load. Sonchack et al. [6] present a
hybrid format that combines flow information and packet-level
metrics, implementing stateful monitoring on programmable
switches. However, they still collect information from multiple
packets, delaying its availability and significantly limiting the
monitored features due to constrained data plane storage.

Network Security Monitoring. In this emerging research di-
rection, several approaches employ hardware-accelerated mon-
itoring to relieve or enhance security applications, e.g., [15],
[33], [34], [51], but either target specific (integrated) appli-
cations or only export aggregated information. In contrast,
Doriguzzi-Corin et al. [28] extract and store packet-level fea-
tures for intrusion detection on the data plane of programmable
switches and periodically export them to the control plane, but
their approach suffers from the same disadvantages as [6].

Implemented in software, Velan et al. [36] complement flow
export with event detection, and Hofstede et al. [14] integrate
an IDS into a flow exporter to reduce the delay until the IDS
can process the monitored information and exclude malicious
traffic from monitoring after its detection. Enhancing universal
flow monitoring, Erlacher et al. [32] extend IPFIX-based flow
records with HTTP-related information. While these solutions
modify flow monitoring toward network security, they do not
increase its accuracy and cannot handle high traffic volumes.

Overall, research shows that custom monitoring of Tbps
throughputs is possible with programmable network devices
and can enhance specific security applications. Still, in light
of more sophisticated threats, there is a lack of flexible
approaches that provide standardized (R1) and fine-grained
(R2) output, and can handle today’s traffic volumes (R3). To
bridge this gap, we propose HybridMon.

IV. PACKET-LEVEL MONITORING WITH
SELECTIVE FLOW-BASED AGGREGATION

This section introduces HybridMon, a performant and
practical hybrid solution for network monitoring. While hy-
brid monitoring could be achieved using existing software-
based flow exporters like YAF [52], HybridMon leverages
P4-programmable switches to achieve flexible monitoring at
Tbps speeds, as highlighted by related work. HybridMon
specifically targets the Intel Tofino [53] switch to optimize
compatibility and functionality with today’s state-of-the-art
hardware. Still, the design principles of HybridMon are not
confined to Intel Tofino and can be adapted to other P4 targets.

We cover the requirements from Sec. II-B as follows:
Deployment. Fulfilling R1, our monitoring relies on estab-
lished protocols for flow export, ensuring compatibility with
common analysis tools. Running on a single switch, Hybrid-
Mon is readily deployed in networks in-line or off-path.
Output. In line with R2, HybridMon instantly exports flow
records with a flow size of 1, i.e., one record for every
packet, to deliver packet-level information while covering
a comprehensive and customizable range of features. Thus,
HybridMon facilitates rich, time-critical analysis.
Flexibility. Addressing R3, HybridMon includes a traffic filter
and allows for the aggregation of selected (low-interest) traffic
into flow statistics to reduce output. It further operates entirely
on the switch’s data plane, avoiding CPU-based bottlenecks
and enabling reliable handling of diverse traffic patterns.
Design Overview. HybridMon comprises three (data-plane)
components illustrated in Fig. 1. First, the 1 Packet Filter
identifies relevant traffic and copies the respective packets

Record

Incoming

Packet

Original
PacketPacket

Filter

1

Ingress

Copy

Mon-
itoring
Engine

2

Egress

Record
Exporter

3

Switch Data Plane

Fig. 1. HybridMon’s three components: 1 The packet filter extracts features,
sorts out irrelevant traffic, and copies relevant packets. These copies are further
processed by 2 the monitoring engine before 3 the record exporter outputs
flow records, either containing packet-level information or flow statistics.

to the 2 Monitoring Engine, which determines whether to
subsample the corresponding flow. Then, the packet copy is
passed to the 3 Record Exporter, which probabilistically
generates a flow record for subsampled flows and a packet-
level record for each packet in unsubsampled flows. The
original packets remain unmodified and, if HybridMon is
deployed in-line, are forwarded to their destination.

The detailed design of HybridMon’s three components is
depicted in Fig. 2 and presented in the next subsections.

A. Packet Filter

The packet filter operates in the ingress of the switch and
extracts all relevant packet features from incoming packets. It
then uses match-action tables to exclude specific traffic from
monitoring. By filtering out irrelevant or volumetric attack
traffic (once detected by an IDS), we conserve processing
resources on our switch and subsequent network components.
While the filter features, e.g., IP addresses or protocol, are
statically defined, the respective match values can be dynam-
ically inserted at run-time to enable quick adjustments to the
monitored traffic during operation. If no filter applies, a copy
of the packet is forwarded to the monitoring engine.

B. Monitoring Engine

By default, HybridMon exports packet-level records, but the
monitoring engine also supports selective subsampling, i.e.,
statistic-based aggregation of multiple packets into a single
flow record. Operators can define which flows to subsample
at run-time using a match-action table, based on factors like
origin, destination, or protocols. If a packet does not match
the user-defined rules, we let the record exporter a generate
a packet-level record solely based on that individual packet.
To achieve subsampling and export of flow statistics for
subsampled flows, the monitoring engine relies on two key
mechanisms: flow tracking and probabilistic export decision.

1) Flow Tracking: To track subsampled flows, we use a
flow register in the ingress, indexed by hashes of flow informa-
tion tuples. These tuples include protocol, source/destination
IP addresses (IPv4 and IPv6), and source/destination ports or
ICMP type/code. To detect collisions, we additionally store
the tuples of the already monitored subsampled flows at
their respective indices and compare them with the tuple of
incoming packets using the following logic:
Empty Entry. If the register entry is empty, the packet is
b recirculated to insert the flow tuple.

Collision. If the entry is not empty but the stored tuple does
not match the tuple of the incoming packet, a collision occurs.

Monitoring Engine Flow Record GeneratorPacket Filter

Copied
packet

with key
parameters k

Flow Register

compare entry
hash(k) to k

No Match

Estimate
drop

probability

Estimate
replacement
probability

Decision
Table

Generate record

Drop

c

b

insert/replace entry

read
+

reset

Match

No Match

Match

compare entry
hash(k) to k

recirculate
packet

increment + drop

generate flow record

generate packet record

generate packet record

reset

a

Flow Record Generator

XOR

Statistics
Register

Copied
packet

with key
parameters k Subsampling

Rules

Match

Ingress Egress

Feature
Extraction

Fig. 2. Our monitoring engine uses copies of the original packet and maintains rules to decide whether to subsample a flow using a flow register that tracks
actively monitored flows. Packets not belonging to subsampled flows always trigger a the generation of packet-level records. The first packet of each new
subsampled flow is b recirculated to insert an entry into the tracking table before we create a first packet-level record. Based on a decision table, packet
copies of already monitored subsampled flows are c either dropped in the egress after updating the statistics or trigger statistics-based flow record generation.

This will, at the latest, happen if the number of subsampled
flows exceeds the flow register’s capacity In this case, we can
either monitor the new flow at packet-level granularity until the
register entry is freed or b recirculate the packet analogously
to replace an existing flow. However, due to our design, we
can only create flow records for incoming packets and not
trigger record generation at an arbitrary time. Thus, replacing
a flow may result in losing its accumulated statistics since its
last export. We present multiple mechanisms to mitigate the
effect of this limitation in Sec. IV-B2.
Match. If the entry is not empty and matches the tuple of the
incoming packet, the flow is already monitored. In this case,
we probabilistically decide whether to export a flow record.

2) Probabilistic Export Decision: For subsampled flows,
we probabilistically generate flow records based on accumu-
lated statistics. These flow statistics are stored in a dedicated
statistics register in the egress and are reset after each export.
The export decision on whether to generate a record for a flow
is based on the probability 𝑝𝑟𝑒𝑐𝑜𝑟𝑑 (𝑠) ≈ min (1, 𝑘

𝑠
), where 𝑠 is

the flow size 𝑘 (i.e., the flow encompasses 𝑠 packets) and 𝑘 is
a tunable parameter. We model 𝑝𝑟𝑒𝑐𝑜𝑟𝑑 using a match-action
table as described in [54]. Since we can only approximate
𝑝𝑟𝑒𝑐𝑜𝑟𝑑 as Tofino, like most ASIC switches, provides only
integer arithmetic logic units, setting 𝑘 to a power of two
simplifies these approximations.
Loss Mitigation. A larger 𝑘 increases the rate of flow records,
reducing the time interval between two records and the in-
formation loss when flows are replaced. Furthermore, due to
its logarithmic behavior, 𝑝𝑟𝑒𝑐𝑜𝑟𝑑 is higher for small flows,
limiting information loss, while large flows generate fewer
records, keeping the total record count at a moderate level.

To prevent loss and cover every subsampled flow in our out-
put in case its flow register entry is replaced early, we always
generate a flow record for a flow’s first packet. Additionally,
we generate a record if a final packet of a TCP flow comes
in, which we identify via TCP RST and TCP FIN flags.
Enforcement. Having decided whether to generate a record
nor not, we use ingress-to-egress mirroring to forward a copy
of the packet to HybridMon’s third component, the record
exporter. We signal all necessary actions using the target port
of the mirrored packet and a dedicated mirror header field.

C. Record Exporter

Once the decision on whether to generate a record is made,
the record exporter implements the corresponding action in
the egress pipeline. In addition, flow collectors also expect
periodic template records [40], [41], which specify the record
structure and interpretation.

1) Template Records: We leverage Tofino’s packet gener-
ator on the control plane to create static template packets at
the desired periodicity, which are forwarded to the collector
by the data plane. The record exporter stores the ID of the
last-received template in a register, enabling the association of
subsequent records with that template. We further employ tem-
plates with a custom control header to periodically piggyback
control information from the control plane, e.g., the collector’s
address or the Unix time to realize accurate timestamps.

2) Packet-Level and Flow Records: If no record is needed,
the flow exporter c updates the statistics of the respective
flow and drops the packet. Otherwise, it a crafts packet-
level records using features extracted in the ingress or c flow
records based on the subsampled data from the egress’ statis-
tics register. The generation of all packet and flow records is
fully bound to the data plane due to our performance demands.
However, the core P4 language does not provide mechanisms
to create new arbitrary packets on the data plane. Therefore,
we exploit the traffic packets mirrored from the ingress:

First, we extract all relevant information, then skip the
irrelevant remainder of the packet. To create records, we add
predefined headers representing IP, UDP, and the flow export
protocol, i.e., IPFIX or NetFlow, to the packet. These headers
contain information such as the collector’s address, the latest
template ID, timestamp, and sequence number. An additional
header structure represents the record payload, which is filled
with the extracted packet-level information and/or monitored
statistics. Lastly, the newly crafted record packet is exported
to the predefined collector for further processing.

Overall, HybridMon enables detailed and customizable in-
line and off-path network monitoring in high-speed networks,
addressing the needs identified in Sec. II-B. In the remainder
of this paper, we demonstrate its feasibility by presenting and
evaluating an implementation for Tofino1.

V. OPEN-SOURCE IMPLEMENTATION OF HYBRIDMON

We implemented HybridMon in P4 for the Intel Tofino1 on
top of basic Longest Prefix Match (LPM) routing functionality.
We chose the IPFIX protocol [41] as it is a widely supported
open standard, increasing deployability. In the following, we
discuss our implemented subsampling and monitored features.

A. Subsampling Strategy
Heavy hitters are prime candidates for subsampling as

packets of these flows typically exhibit similar characteristics,
making their aggregation less critical regarding information
loss while providing significant reduction potential. Thus, our
monitoring engine implementation targets heavy hitters by
leveraging PRECISION [54] with a 2-way associative flow
table, split over 2 register arrays, and simultaneously serving
as flow register as described in Sec. IV-B1 and as heavy
hitter list. We configured a flow table size of 65 536 entries,
which is the maximum share of subsampled flows supported
by our implementation on the used hardware. We further
lowered the recirculation probabilities in our implementation
by a factor of 6 compared to PRECISION, increasing the
monitoring capacity. Last, we set 𝑘 = 32 as default parameter
for 𝑝𝑟𝑒𝑐𝑜𝑟𝑑 (cf. Sec. IV-B2), enabling a reasonable trade-off
between export frequency of subsampled flows and accuracy.

B. Monitored Features
We currently support the extraction of 27 standard IPFIX

Information Elements (IEs) defined by IANA [55], including
source and destination MAC and IP addresses, protocol ID,
source and destination ports, number of octets, flow start time,
IP time-to-live, fragmentation offset, ID, and flags, ICMP type
and code, TCP flags, sequence number, and window size, and
HTTP status code. Employing enterprise-specific IEs [55],
we further introduced port-based detection of startTLS, and
DNS over UDP, including DNS request and response code.
These examples demonstrate that HybridMon can easily export
custom flow and packet-level features (cf. R2) above the
transport layer while fully complying with the IPFIX protocol.
In total, our implementation currently supports 31 features, and
our tests showed that we can easily employ 10 counters of 4 B
each for applicable features to keep the state of subsampled
flows without memory issues.

Our prototype demonstrates that HybridMon can be imple-
mented on off-the-shelf switch hardware and supports standard
flow export protocols, thereby satisfying R1. Subsequently, we
evaluate our implementation with respect to R2 and R3.

VI. EVALUATION OF HYBRIDMON

We provide an extensive evaluation to prove the feasibility
of our design and ensure that the requirements established
in Sec. II-A are met. We first investigate the data quality of
HybridMon’s output in Sec. VI-A and how it copes with traffic
from Internet backbone links in Sec. VI-B, comparing it to the
open-source flow exporter YAF [52]. Afterward, we assess
HybridMon’s effect on attack detection and back-feeding of
filter rules in Sec. VI-C. Last, we examine its performance
and benefits in a university-specific use case in Sec. VI-D.

A. Data Quality Assessment

We first examine the data quality of HybridMon to ensure
that it is sound and can be used as input for reliable analy-
sis (R2). For this purpose, we generated IPFIX records with
and without HybridMon’s heavy hitter-based subsampling, i.e.,
a mix of packet-level and flow records vs. packet-level records
only. We compared the output to (i) the input and (ii) the
traditional IPFIX-based flow records exported by YAF [52].
To highlight the applicability to production traffic, we used
four real-world traffic traces as input, each randomly chosen
from the publicly available datasets provided by CAIDA [56]–
[59], containing extensive anonymized packet captures with
real traffic recorded at high-speed backbone links.

To evaluate HybridMon on the datasets, we connected two
workstations W1 and W2, using 10 Gbps links to one 32-port
Tofino-based switch running HybridMon. Then, we replayed
each trace from W1 to the switch and collected its output,
i.e., the generated IPFIX records, at W2. We conducted 10
runs for each of the four CAIDA traces to obtain significant
results. Due to processing limitations of our workstations, we
replayed the CAIDA traces at 100 Mbps and fed the same
slowed-down traces into YAF to obtain comparable output.
This adaption does not influence our evaluation results as it
only affects the packets’ timestamps but not the metadata, such
as IP addresses or protocols (i.e., the targets of our evaluation).

1) Packet Coverage: We first evaluated the share of packets
reported for every {protocol, direction, port}-tuple. To this
end, we counted the packet numbers for each tuple in the
original traces and compared them against the records gen-
erated by HybridMon and YAF. YAF covered 100 % of the
packets of each tuple in its records. The same was the case
for HybridMon without subsampling. With subsampling, Hy-
bridMon only reported 92 % of a tuple’s packets in the worst
case due to replacement-based statistic losses (cf. Sec. IV-B1).
However, for 99.9 % of the tuples, the package coverage was
still above 95 %, and 83 % of the tuples had 100 % of their
packets reported.

2) Flow Coverage: Flow-based network monitoring typi-
cally captures connections defined by a five-tuple of source
and destination IP address, source and destination port, and
protocol. Thus, every flow that occurs in the traffic must also
be contained in the monitored data. We listed for each input
trace which flows it contains and analyzed which flows were
covered by the output records of HybridMon. The results
showed that depending on the CAIDA trace, only 1 to 3 flows
were not captured while each CAIDA trace contained between
1M and 3M flows in total. However, as no packet loss was ob-
served before, we conducted a closer investigation and found
that none of the flows was actually lost but wrongly labeled for
one of two reasons: (a) IP-in-IP encapsulation is currently not
supported by our implementation, and (b) ICMPv6 fragments
are cut off in the CAIDA traces due to anonymization. In
both cases, our parser does not detect transport protocol
information, setting the ports of the captured flows to 0. Our
implementation can be easily extended to cover the first case,

TABLE I
SHOWN ARE THE OUTPUT QUANTITIES AS A SHARE (IN %) OF THE INPUT

QUANTITIES OF THE DIFFERENT APPROACHES AND HYBRIDMON’S
SUBSAMPLING RATE, I.E., HOW MANY FLOWS WERE SUBSAMPLED. IPFIX

RECORDS ARE RELATIVE TO THE INPUT PACKET COUNT.

Trace Method Packets Bytes IPFIX
Records

CAIDA2011A HybridMon 100.00 20.22 100.00
sub. (7.21%) 51.42 10.40 51.42

YAF 4.89 1.16 12.09

CAIDA2011B HybridMon 100.00 17.61 100.00
sub. (11.99%) 41.23 7.26 41.23

YAF 2.78 0.70 8.52

CAIDA2015A HybridMon 100.00 16.91 100.00
sub. (8.15%) 46.25 7.80 46.24

YAF 1.28 0.42 4.99

CAIDA2018A HybridMon 100.00 12.07 100.00
sub. (8.34%) 37.20 4.50 37.19

YAF 3.57 0.43 7.12

and the second case would not occur with live traffic. Thus,
the results indicate full coverage and reliable monitoring of all
flows by HybridMon with and without subsampling.

B. Monitoring Efficiency and Throughput

Next, we evaluated the resource efficiency and monitoring
capacity of HybridMon (R3) using real hardware.

1) Resource Efficiency: We first evaluated HybridMon’s
output size in terms of packets, bytes, and records, again
comparing it against the open-source tool YAF. To this end,
we generated records including standard flow features (i.e.,
TCP flags and packet and byte counters), resulting in records
of 50 B for HybridMon and 49 B for YAF. We then conducted
10 runs for each of the four CAIDA traces and averaged the
numbers of exported packets, bytes, and records (cf. Tab. I).

YAF applies advanced software-based aggregation to all
flows, creating low record numbers of up to 12 % of the input
packets. YAF can also aggregate multiple records into one
record packet, leading to even lower numbers of record packets
than records and only 0.4 % to 1 % of the original bandwidth.
In contrast, HybridMon’s implementation on switch hardware
does not enable such record aggregation. Thus, each record
requires a packet and the number of output packets always
equals the number of output records. Logically, no reduction
of the output records and packets occurs with deactivated
subsampling, where one packet-level record is generated for
every monitored packet. Still, even this 1-to-1 mapping signifi-
cantly reduces the bandwidth, as the condensed IPFIX records
only need 12 % to 20 % of the original bandwidth. In turn,
heavy hitter-based subsampling, which affected 7 % to 12 %
of the flows, reduced the number of output records and record
packets by around 48 % to 63 %, reducing the bandwidth
to 4.5 % to 10.5 % of the original trace.

The results of this evaluation show that HybridMon pro-
vides lower output efficiency compared to traditional flow
monitoring, which is an expected consequence of its higher
granularity. However, its bandwidth is significantly reduced
compared to packet monitoring, even without aggregation.
We thus conclude that HybridMon offers a reasonable trade-
off between accuracy and efficiency, which is even tunable
by adapting the share of subsampled traffic. Furthermore,

we did not deploy any filter rules for our evaluation, which
will additionally reduce the output size. Last, software-based
solutions, e.g., deployed at additional middleboxes, could
complement HybridMon by providing subsequent aggregation
of its output and further reducing the load on the network.

2) Monitoring Capacity: Our Tofino1 switch has two inde-
pendent pipelines, each accommodating 16 ports. The moni-
toring engine in our implementation leverages packets received
on a single pipeline. Separate monitoring with both pipelines
is feasible, e.g., to monitor different subnets, and theoretically
allows for up to 3.2 Tbps for off-path monitoring and up
to 1.6 Tbps for in-line monitoring. However, in practice, there
are additional factors to consider, particularly the impact of re-
circulation when using subsampling, the deployment scenario,
and different input patterns such as attack traffic. We evaluate
the effects of these factors subsequently.
Impact of Recirculation. Our implementation employs heavy
hitter-based subsampling using PRECISION [54], which prob-
abilistically recirculates a portion of the input packets to add
them to the flow register/heavy hitter list. This recirculation
can reduce the amount of traffic HybridMon can handle to less
than the switch’s maximum capacity. To measure the impact
of recirculation, we replayed each of the four CAIDA traces
10 times as done in Sec. VI-A and counted the recirculated
packets. Recirculation rates for these traces were consistent
across runs and ranged from 0.6 to 1.1 %. We also measured
the recirculation rate for the measurement traffic described in
Sec. VI-D, resulting in 2.8 %. These results show that recircu-
lation has only minimal impact on the switch’s capacity. With
average traffic, Tofino1 with 3.2 Tbps line-rate can support
around 3.16 Tbps. Even subject to unusual traffic, where the
heavy hitter table is ineffective, recirculation only reduces the
switch’s maximum capacity to around 3.1 Tbps.
Impact of Deployment. The actual monitoring capacity fur-
ther depends on the deployment scenario. To forward records
directly to connected collectors, i.e., without loading the rest
of the network, we need to occupy dedicated collector ports.
Furthermore, in the case of short flows with small packets,
e.g., caused by DNS traffic or SYN flooding, record packets
might be more than twice the size of the original packet since
subsampling cannot be applied and current data plane capa-
bilities do not allow exporting multiple records in one packet.
To prevent record loss in this worst case, we need to account
for twice as much output as input, dedicating at least twice as
many ports to the collector ports as to the incoming monitored
traffic. Then, HybridMon provides a monitoring capacity of up
to 1.03 Tbps for in-line and off-path monitoring when using
both pipelines and already considering recirculation. Thus,
even in the worst case, HybridMon offers a significantly higher
monitoring capacity than commercial hardware appliances for
flow monitoring, which typically support up to 100 Gbps per
device, e.g., the Flowmon Probe [60].
Impact of Volumetric Attacks. Just as other monitoring
approaches, HybridMon is not immune to volumetric attacks.
In particular and as described above, short flows with small
packet sizes can amplify the monitoring output. However,

HybridMon is more robust than common approaches that
aggregate records on the control plane as their performance
depends heavily on the successful aggregation of packets,
which fails in face of many simultaneous small flows. In
contrast, such approaches quit operation when the control
plane is overloaded, hindering attack detection. HybridMon
keeps the monitoring and subsequenty security applications
running as long as the data plane capacity is not exceeded
(cf. Sec. VI-B2). Additionally, as soon as an attack is detected,
it can be blocked from monitoring by uninvasively installing
respective filter rules, as demonstrated subsequently.

C. Detection and Mitigation of Attack Traffic

As HybridMon is designed to provide enhanced input for
various applications compared to traditional flow monitoring,
we also demonstrate its effectiveness for detecting attacks
with IDSs (R2) and support for reactive installation of filter
rules (R3), e.g., for security purposes.

1) Effectiveness for Intrusion Detection: We evaluated the
effectiveness of HybridMon and its output for intrusion detec-
tion by measuring the detection performance of the Kitsune
IDS [61] on raw packets as well as flow and hybrid records.
Kitsune originally extracts features from full packet captures
and calculates statistics for anomaly detection. To provide
significant and comparable results, we repeated Kitsune’s
original evaluation on Mirai attack traffic, which is available
with their demo code [62], but extended Kitsune to also extract
and process IPFIX records, complementing its features.

We fed the Mirai traffic trace, which contains ARP flooding,
into YAF to export traditional flow records and into Hy-
bridMon to export unsubsampled hybrid records, providing
the same features but different granularities. In detail, YAF
always aggregated around 1500 ARP requests into one flow
record while HybridMon generated one individual record for
each ARP request. Since we expected a granularity similar
to that provided by YAF for subsampled records generated
with HybridMon, we did not investigate HybridMon detection
performance with subsampling separately at this point.

After record generation, we trained and tested Kitsune on
the raw Mirai packets and on the flow and hybrid records using
Kitsune’s original training configuration, setting the threshold
to provide an FPR of 0.001. While the balanced accuracy of
flow and hybrid records was similar, the higher granularity
of the hybrid records lead to a significantly higher precision
and F1 score (cf. Tab. II). Thus, our results indicate that
hybrid monitoring as provided by HybridMon can effectively
improve the detection rates of security applications compared
to standard flow monitoring. However, future research on a
broader range of security applications and diverse datasets
is needed to evaluate the potential of hybrid monitoring
approaches fully.

2) Installation of Filter Rules at Run-Time: Fast and flex-
ible configuration of the monitored traffic, e.g., exclusion of
attack traffic after its detection, is critical to maintain operation
when facing heterogeneous traffic [48]. We demonstrate this
HybridMon feature by implementing a proof-of-concept with

TABLE II
DETECTION PERFORMANCE OF KITSUNE ON THE MIRAI ATTACK TRACE

FOR FULL PACKETS VS. OUTPUT OF YAF AND HYBRIDMON.

Approach Balanced Accuracy Precision F1
Full Packets 0.939 0.999 0.936

YAF 0.499 0.321 0.486

HybridMon 0.523 0.991 0.923

a simple threshold-based IDS written in Python, deployed at
our collector, and the Mirai attack traffic from the Kitsune
dataset [61] as input. We configured the IDS to trigger an
alert when its threshold is reached and then immediately
install a filter rule via HybridMon’s control plane using a
TCP client/server implementation. We then measured the time
between alert and rule deployment over 10 runs and made
sure that further traffic from the attacking MAC address was
excluded from the hybrid records. Averaged over 10 runs, it
took only 1.272 s from triggering the alert at the IDS until
the new filter rule was successfully installed. Therefore, our
evaluation shows that HybridMon is quickly adapted to sudden
events in the network, e.g., triggered by security applications.

D. Use Case Evaluation: University Network Traces

HybridMon is designed to address the needs of network
operators who operate a large backbone with heterogeneous
network use regarding throughputs, users, and machines.
Therefore, we verify the performance of HybridMon in our
campus network (R3), which we present subsequently. Then,
we discuss how HybridMon’s functional features benefit this
use case (R2, R3).

1) Performance Evaluation: University networks must both
cope with high traffic volumes and unusual traffic patterns due
to ongoing research, e.g., caused by Internet measurements at
our computer science department [63], resulting in outstanding
shares of UDP traffic and small flows. Indeed, our network op-
erators report that commercial flow export solutions, as partly
deployed at our university’s backbone, at times struggle with
handling these loads and fail to generate records. Thus, we
evaluated the performance of our HybridMon with real traffic
traces covering two scenarios: standard and research traffic.
Specifically, we were provided with truncated traffic traces
captured at the peering point of RWTH Aachen University
with its transit network, i.e., all non-internal traffic traverses
this link. The flow size distributions of both traces are provided
in Fig. 3a) and Fig. 3b), hightlighting their differences.

100 102 104

flow size [#packets]

100

103

106

fr
eq

ue
nc

y
[#

flo
w

s]

(a) Regular traffic

100 102 104

flow size [#packets]

100

103

106

fr
eq

ue
nc

y
[#

flo
w

s]

(b) Research traffic

Fig. 3. Flow size distributions of regular and abnormal research traffic
captured at our university’s backbone.

0 50 100 150
Time [s]

0
20000
40000
60000
80000

100000
120000

Pa
ck

et
co

un
t

(a) University traffic (input)

0 50 100 150
Time [s]

0
20000
40000
60000
80000

100000
120000

Pa
ck

et
co

un
t

(b) HybridMon output (full)

0 50 100 150
Time [s]

0
20000
40000
60000
80000

100000
120000

Pa
ck

et
co

un
t

(c) HybridMon output (subsampled)

Fig. 4. Packet distributions (1 s bins) of input/output traffic originating from our university network’s peering point.

0 50 100 150 200
Time [s]

0
20000
40000
60000
80000

100000
120000

Pa
ck

et
co

un
t

(a) Measurement traffic (input)

0 50 100 150 200
Time [s]

0
20000
40000
60000
80000

100000
120000

Pa
ck

et
co

un
t

(b) HybridMon output (full)

0 50 100 150 200
Time [s]

0
20000
40000
60000
80000

100000
120000

Pa
ck

et
co

un
t

(c) HybridMon output (subsampled)

Fig. 5. Packet distributions (1 s bins) of input/output traffic originating from our university’s data center containing only special measurement traffic.

Regular Operation. The regular traffic capture covers al-
most 3 min of RWTH Aachen University’s full traffic. We vi-
sualize its packet count distribution in Fig. 4a). Fig. 4b) details
the output of HybridMon without subsampling, showing that
the output distribution mirrors the input distribution. In con-
trast, Fig. 4c) shows the output when applying subsampling,
resulting in significantly reduced packet counts.
Research Traffic. We provide the packet count distribution
of the examined research traffic in (cf. Fig. 5a)). Using the
respective capture as input for HybridMon, we observed that
our subsampling strategy had little impact, resulting in similar
input and output distributions for full and subsampled flow
monitoring (cf. Fig. 5a) and Fig. 5c). However, all flows of
the original trace were preserved, again covering over 99.9 %
percent of their respective packets on average (cf. Fig. 5b).
Discussion. Similar to the attack traffic discussed
in Sec. VI-B2, the research traffic makes it hard to define
permanen heavy hitters for subsampling due to its many small
flows. Still, this challenging traffic is handled without effort
or accuracy loss. Furthermore, our evaluation demonstrates
that HybridMon effectively reduces the monitoring output
compared to packet monitoring for regular traffic, i.e., the
large majority of traffic in our university’s network.

2) Functional Benefits: As discussed in Sec. VI-B2, Hy-
bridMon can handle challenging traffic as occurring in our
university’s network with up to 1.03 Tbps. According to our
network operators, this throughput and the port density of
Tofino1 are more than sufficient to cover the whole traffic
of RWTH Aachen University (around 40 Gbps) with a single
switch for the foreseeable future. Research traffic is also
one example of traffic that regularly occupies high shares of
monitoring and processing resources, although it is known
and not of interest from a security perspective, and can be
reasonably excluded through filtering (cf. Sec. IV). Last, we
added a port-based startTLS detection to HybridMon’s feature
list upon request of our university’s network operators, who are

particularly interested in observing such connections due to the
numerous vulnerabilities of startTLS [64]. This highlights the
capability and benefits of HybridMon for monitoring custom
features to increase the visibility of critical characteristics.

Overall, our results emphasize that HybridMon can handle
real-world traffic without any particular restrictions and pro-
vide use case specific features. We plan to thoroughly study
HybridMon in a production environment at the university’s
uplink and replace commercial solutions if applicable.

VII. CONCLUSION

Network monitoring is key for detecting and investigating
attacks, but we identify a lack of balanced hybrid solutions
between packet monitoring and flow monitoring. To fill this
gap, we propose HybridMon, which combines IPFIX-based
packet-level records with custom features and selective flow
aggregation. It further allows adapting the monitored traffic
at run-time, e.g., as an automated reaction by an IDS. Con-
sequently, HybridMon offers sensitive and resource-efficient
monitoring with a tunable trade-off between efficiency and ac-
curacy. Our open-source implementation is readily deployable
in-line or off-path and exports records at Tbps while providing
compatibility with existing flow-based analysis tools. Our
evaluation confirms the practical feasibility of HybridMon
for reliable and reactive network monitoring in the wild. We
further demonstrate its efficiency gain compared to packet
monitoring and its potential to increase the effectiveness of
security applications compared to traditional flow monitoring.

Especially as broadly applied encryption (e.g., through
QUIC) might eventually render full packet captures obsolete,
we expect network operators to have an increasing demand
for efficient monitoring of packet-level metadata, for which
HybridMon provides an efficient solution. In the future, we
will combine HybridMon with diverse analysis tools, e.g.,
IDS, to further evaluate the impact of its increased monitoring
granularity compared to traditional flow monitoring.

REFERENCES

[1] D. Ding, M. Savi, F. Pederzolli, and D. Siracusa, “Design and Devel-
opment of Network Monitoring Strategies in P4-enabled Programmable
Switches,” in Proceedings of the 2022 IEEE/IFIP Network Operations
and Management Symposium (NOMS ’22), IEEE, 2022.

[2] K. Kent, S. Chevalier, T. Grance, and H. Dang, “Guide to Integrating
Forensic Techniques into Incident Response.” NIST SP 800-86, 2006.

[3] R. Hunt and S. Zeadally, “Network Forensics: An Analysis of Tech-
niques, Tools, and Trends,” Computer, vol. 45, no. 12, pp. 36–43, 2012.

[4] B. Mukherjee, L. T. Heberlein, and K. N. Levitt, “Network Intrusion
Detection,” IEEE Network, vol. 8, no. 3, pp. 26–41, 1994.

[5] S. J. Saidi, A. Maghsoudlou, D. Foucard, G. Smaragdakis, I. Poese, and
A. Feldmann, “Exploring Network-Wide Flow Data With Flowyager,”
IEEE Transactions on Network and Service Management, vol. 17, no. 4,
pp. 1988–2006, 2020.

[6] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M. Smith, “Scaling
Hardware Accelerated Network Monitoring to Concurrent and Dynamic
Queries With *Flow,” in Proceedings of the 2018 USENIX Annual
Technical Conference (ATC ’18), pp. 823–835, USENIX Association,
2018.

[7] European Parliament, “Russia’s war on Ukraine: Timeline of cyber-
attacks.” https://www.europarl.europa.eu/thinktank/en/document/EPRS
BRI(2022)733549, 2022 (accessed January 5, 2024).

[8] H. S. Lallie, L. A. Shepherd, J. R. C. Nurse, A. Erola, G. Epiphaniou,
C. Maple, and X. Bellekens, “Cyber security in the age of COVID-
19: A timeline and analysis of cyber-crime and cyber-attacks during the
pandemic,” Computers & Security, vol. 105, 2021.

[9] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller,
“An Overview of IP Flow-Based Intrusion Detection,” IEEE Communi-
cations Surveys & Tutorials, vol. 12, no. 3, pp. 343–356, 2010.

[10] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow Monitoring Explained: From Packet Capture to Data
Analysis With NetFlow and IPFIX,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 4, pp. 2037–2064, 2014.

[11] F. Erlacher and F. Dressler, “FIXIDS: A High-Speed Signature-
based Flow Intrusion Detection System,” in Proceedings of the 2018
IEEE/IFIP Network Operations and Management Symposium (NOMS
’18), IEEE, 2018.

[12] L. Hellemons, L. Hendriks, R. Hofstede, A. Sperotto, R. Sadre, and
A. Pras, “SSHCure: A Flow-Based SSH Intrusion Detection System,”
in Proceedings of the 6th IFIP International Conference on Autonomous
Infrastructure, Management, and Security (AIMS ’12), vol. 7279, pp. 86–
97, Springer, 2012.

[13] L. Dias, S. Valente, and M. Correia, “Go With the Flow: Clustering
Dynamically-Defined NetFlow Features for Network Intrusion Detection
with DynIDS,” in Proceedings of the 2020 IEEE 19th International
Symposium on Network Computing and Applications (NCA ’20), pp. 1–
10, IEEE, 2020.

[14] R. Hofstede, V. Bartoš, A. Sperotto, and A. Pras, “Towards Real-Time
Intrusion Detection for NetFlow and IPFIX,” in Proceedings of the 9th
International Conference on Network and Service Management (CNSM
’13), pp. 227–234, IEEE, 2013.

[15] S. Panda, Y. Feng, S. G. Kulkarni, K. K. Ramakrishnan, N. Duffield, and
L. N. Bhuyan, “SmartWatch: Accurate Traffic Analysis and Flow-State
Tracking for Intrusion Prevention Using SmartNICs,” in Proceedings of
the 17th International Conference on Emerging Networking EXperiments
and Technologies (CoNEXT ’21), pp. 60–75, ACM, 2021.

[16] H. Clausen, R. Flood, and D. Aspinall, “Controlling Network Traffic
Microstructures for Machine-Learning Model Probing,” in Proceedings
of the 2021 EAI International Conference on Security and Privacy in
Communication Networks (SecureComm ’21), vol. 398, pp. 456–475,
Springer, 2021.

[17] M. A. Salahuddin, M. F. Bari, H. A. Alameddine, V. Pourahmadi, and
R. Boutaba, “Time-based Anomaly Detection using Autoencoder,” in
Proceedings of the 2020 16th International Conference on Network and
Service Management (CNSM ’20), IEEE, 2020.

[18] K. Yang, S. Kpotufe, and N. Feamster, “Feature Extraction for Novelty
Detection in Network Traffic.” arXiv:2006.16993, 2020.

[19] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: Query-Driven Streaming Network Telemetry,” in
Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM ’18), pp. 357–371, ACM, 2018.

[20] Y. Zhou, C. Sun, H. H. Liu, R. Miao, S. Bai, B. Li, Z. Zheng, L. Zhu,
Z. Shen, Y. Xi, P. Zhang, D. Cai, M. Zhang, and M. Xu, “Flow Event
Telemetry on Programmable Data Plane,” in Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communication
on the Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM ’20), pp. 76–89, ACM, 2020.

[21] C. Misa, W. O’Connor, R. Durairajan, R. Rejaie, and W. Willinger,
“Dynamic Scheduling of Approximate Telemetry Queries,” in Proceed-
ings of the 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’22), pp. 701–717, USENIX Association, 2022.

[22] G. Vassoler, J. A. Marques, and L. P. Gaspary, “VERMONT: Towards
an In-band Telemetry-Based Approach for Live Network Property Ver-
ification,” in Proceedings of the 2023 IEEE/IFIP Network Operations
and Management Symposium (NOMS ’23), IEEE, 2023.

[23] Z. Xu, Z. Lu, and Z. Zhu, “Information-Sensitive In-Band Network
Telemetry in P4-Based Programmable Data Plane,” IEEE/ACM Trans-
actions on Networking, 2024.

[24] K. Papadopoulos, P. Papadimitriou, and C. Papagianni, “Deterministic
and Probabilistic P4-Enabled Lightweight In-Band Network Telemetry,”
IEEE Transactions on Network and Service Management, vol. 20, no. 4,
pp. 4909–4922, 2023.

[25] H. N. Nguyen, B. Mathieu, M. Letourneau, G. Doyen, S. Tuffin, and
E. M. d. Oca, “A comprehensive p4-based monitoring framework for l4s
leveraging in-band network telemetry,” in NOMS 2023-2023 IEEE/IFIP
Network Operations and Management Symposium, pp. 1–6, 2023.

[26] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
Sketch to Rule Them All: Rethinking Network Flow Monitoring with
UnivMon,” in Proceedings of the 2016 Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM ’16), pp. 101–114,
ACM, 2016.

[27] O. Michel, J. Sonchack, G. Cusack, M. Nazari, E. Keller, and J. M.
Smith, “Software Packet-Level Network Analytics at Cloud Scale,” IEEE
Transactions on Network and Service Management, vol. 18, no. 1,
pp. 597–610, 2021.

[28] R. Doriguzzi-Corin, L. A. D. Knob, L. Mendozzi, D. Siracusa, and
M. Savi, “Introducing packet-level analysis in programmable data planes
to advance network intrusion detection,” Computer Networks, vol. 239,
p. 110162, 2024.

[29] Y. Hu, D.-M. Chiu, and J. C. S. Lui, “Adaptive Flow Aggregation - A
New Solution for Robust Flow Monitoring under Security Attacks,” in
Proceedings of the 2006 IEEE/IFIP Network Operations and Manage-
ment Symposium (NOMS ’06), pp. 424–435, IEEE, 2006.

[30] B. Guan and S.-H. Shen, “FlowSpy: An Efficient Network Monitoring
Framework Using P4 in Software-Defined Networks,” in Proceedings of
the 2019 IEEE 90th Vehicular Technology Conference (VTC ’19-Fall),
IEEE, 2019.

[31] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith, “TurboFlow:
Information Rich Flow Record Generation on Commodity Switches,”
in Proceedings of the 13th European Conference on Computer Systems
(EuroSys ’18), ACM, 2018.

[32] F. Erlacher, W. Estgfaeller, and F. Dressler, “Improving Network
Monitoring through Aggregation of HTTP/1.1 Dialogs in IPFIX,” in
Proceedings of the 2016 IEEE 41st Conference on Local Computer
Networks (LCN ’16), pp. 543–546, IEEE, 2016.

[33] N. Gray, K. Dietz, M. Seufert, and T. Hossfeld, “High Performance
Network Metadata Extraction Using P4 for ML-based Intrusion De-
tection Systems,” in Proceedings of the 2021 IEEE 22nd International
Conference on High Performance Switching and Routing (HPSR ’21),
IEEE, 2021.

[34] D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. V. Ramos,
and A. Madeira, “FlowLens: Enabling Efficient Flow Classification for
ML-based Network Security Applications,” in Proceedings of the 28th
Annual Network and Distributed System Security Symposium (NDSS
’21), Internet Society, 2021.

[35] G. Gori, L. Rinieri, A. Al Sadi, A. Melis, F. Callegati, and M. Prandini,
“GRAPH4: A Security Monitoring Architecture Based on Data Plane
Anomaly Detection Metrics Calculated over Attack Graphs,” Future
Internet, vol. 15, no. 11, 2023.

[36] P. Velan, “EventFlow: Network flow aggregation based on user actions,”
in Proceedings of the 2016 IEEE/IFIP Network Operations and Man-
agement Symposium (NOMS ’16), pp. 767–771, IEEE, 2016.

[37] P. Haag, “nfdump.” https://github.com/phaag/nfdump, 2015.
[38] I. B. Fink, I. Kunze, P. Hein, J. Pennekamp, B. Standaert, K. Wehrle,

and J. Rüth, “Prototype Implementation of HybridMon.” https://github.
com/COMSYS/HybridMon, 2025.

https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2022)733549
https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2022)733549
https://github.com/phaag/nfdump
https://github.com/COMSYS/HybridMon
https://github.com/COMSYS/HybridMon

[39] L. F. Sikos, “Packet analysis for network forensics: A comprehensive
survey,” Forensic Science International: Digital Investigation, vol. 32,
2020.

[40] B. Claise, “Cisco Systems NetFlow Services Export Version 9.” RFC
3954, 2004.

[41] B. Claise, B. Trammell, and P. Aitken, “Specification of the IP Flow
Information Export (IPFIX) Protocol for the Exchange of Flow Infor-
mation.” RFC 7011, 2013.

[42] C. Gates, M. Collins, M. Duggan, A. Kompanek, and M. Thomas,
“More Netflow Tools for Performance and Security,” in Proceedings of
the 2004 USENIX Large Installation System Administration Conference
(LISA ’04), pp. 121–132, USENIX Association, 2004.

[43] nTop, “nProbe.” https://www.ntop.org/products/netflow/nprobe/, 2015.
[44] T. AbuHmed, A. Mohaisen, and D. Nyang, “Deep Packet Inspection for

Intrusion Detection Systems: A Survey,” Journal of the Korean Institute
of Communication Sciences, vol. 24, no. 11, pp. 22–36, 2007.

[45] A. Kuzmanovic and E. W. Knightly, “Low-rate TCP-targeted denial of
service attacks: the shrew vs. the mice and elephants,” in Proceedings of
the ACM SIGCOMM 2003 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication (SIGCOMM
’03), pp. 75–86, ACM, 2003.

[46] J. R. Binkley and B. Massey, “Ourmon and Network Monitoring Perfor-
mance,” in Proceedings of the FREENIX Track: 2005 USENIX Annual
Technical Conference (ATC ’05), pp. 95–108, USENIX Association,
2005.

[47] P. Velan and P. Čeleda, “Application-Aware Flow Monitoring,” in
Proceedings of the 2019 IFIP/IEEE Symposium on Integrated Network
and Service Management (IM ’19), pp. 701–706, IEEE, 2019.

[48] J. Amann and R. Sommer, “Providing Dynamic Control to Passive
Network Security Monitoring,” in Proceedings of the 18th International
Symposium on Research in Attacks, Intrusions, and Defenses (RAID ’15),
vol. 9404, pp. 133–152, Springer, 2015.

[49] H. N. Nguyen, B. Mathieu, M. Letourneau, G. Doyen, S. Tuffin, and
E. M. d. Oca, “A Comprehensive P4-based Monitoring Framework for
L4S leveraging In-band Network Telemetry,” in Proceedings of the 2023
IEEE/IFIP Network Operations and Management Symposium (NOMS
’23), IEEE, 2023.

[50] L. Castanheira, R. Parizotto, and A. E. Schaeffer-Filho, “FlowStalker:
Comprehensive Traffic Flow Monitoring on the Data Plane using P4,”
in Proceedings of the 2019 IEEE International Conference on Commu-
nications (ICC ’19), IEEE, 2019.

[51] G. Gori, L. Rinieri, A. Al Sadi, A. Melis, F. Callegati, and M. Pran-
dini, “Graph4: A security monitoring architecture based on data plane

anomaly detection metrics calculated over attack graphs,” Future Inter-
net, vol. 15, no. 11, 2023.

[52] C. M. Inacio and B. Trammell, “YAF: Yet Another Flowmeter,” in Pro-
ceedings of the 2010 USENIX Large Installation System Administration
Conference (LISA ’10), USENIX Association, 2010.

[53] Intel Corporation, “Intel® Tofino™ Programmable Ethernet Switch
ASIC.” https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch/tofino-series.html, 2020.

[54] R. Ben-Basat, X. Chen, G. Einziger, and O. Rottenstreich, “Efficient
Measurement on Programmable Switches Using Probabilistic Recircu-
lation,” in Proceedings of the 2018 IEEE 26th International Conference
on Network Protocols (ICNP ’18), pp. 313–323, IEEE, 2018.

[55] IANA, “IP Flow Information Export (IPFIX) Entities.” https://www.iana.
org/assignments/ipfix/ipfix.xhtml, 2007.

[56] CAIDA, “The CAIDA UCSD Anonymized Internet Traces 2011 –
DirA 20110607-235600 UTC.” https://catalog.caida.org/details/dataset/
passive 2011 pcap, 2011.

[57] CAIDA, “The CAIDA UCSD Anonymized Internet Traces 2011 –
DirB 20151217-133400 UTC.” https://catalog.caida.org/details/dataset/
passive 2011 pcap, 2011.

[58] CAIDA, “The CAIDA UCSD Anonymized Internet Traces 2015 –
DirA 20151217-133400 UTC.” https://catalog.caida.org/details/dataset/
passive 2015 pcap, 2015.

[59] CAIDA, “The CAIDA UCSD Anonymized Internet Traces 2018 –
DirA 20180816-135200 UTC.” https://catalog.caida.org/details/dataset/
passive 2018 pcap, 2018.

[60] Progress Software Corporation, “Flowmon Probe.” https://www.
flowmon.com/en/products/appliances/probe, 2009.

[61] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
Ensemble of Autoencoders for Online Network Intrusion Detection,” in
Proceedings of the 25th Annual Network and Distributed System Security
Symposium (NDSS ’18), Internet Society, 2018.

[62] Y. Mirsky, “Kitsune Demo Code.” https://github.com/ymirsky/
Kitsune-py/blob/master/example.py, 2018.

[63] M. Dahlmanns, J. Lohmöller, I. B. Fink, J. Pennekamp, K. Wehrle,
and M. Henze, “Easing the conscience with opc ua: An internet-wide
study on insecure deployments,” in Proceedings of the ACM Internet
Measurement Conference, IMC ’20, (New York, NY, USA), pp. 101–
110, Association for Computing Machinery, 2020.

[64] H. Böck, “Vulnerabilities show why STARTTLS should
be avoided if possible.” https://blog.apnic.net/2021/11/18/
vulnerabilities-show-why-starttls-should-be-avoided-if-possible/,
2021 (accessed October 11, 2024).

https://www.ntop.org/products/netflow/nprobe/
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.iana.org/assignments/ipfix/ipfix.xhtml
https://www.iana.org/assignments/ipfix/ipfix.xhtml
https://catalog.caida.org/details/dataset/passive_2011_pcap
https://catalog.caida.org/details/dataset/passive_2011_pcap
https://catalog.caida.org/details/dataset/passive_2011_pcap
https://catalog.caida.org/details/dataset/passive_2011_pcap
https://catalog.caida.org/details/dataset/passive_2015_pcap
https://catalog.caida.org/details/dataset/passive_2015_pcap
https://catalog.caida.org/details/dataset/passive_2018_pcap
https://catalog.caida.org/details/dataset/passive_2018_pcap
https://www.flowmon.com/en/products/appliances/probe
https://www.flowmon.com/en/products/appliances/probe
https://github.com/ymirsky/Kitsune-py/blob/master/example.py
https://github.com/ymirsky/Kitsune-py/blob/master/example.py
https://blog.apnic.net/2021/11/18/vulnerabilities-show-why-starttls-should-be-avoided-if-possible/
https://blog.apnic.net/2021/11/18/vulnerabilities-show-why-starttls-should-be-avoided-if-possible/

	Introduction
	Traditional Network Monitoring and the Road Ahead
	Comparison of Packet and Flow Monitoring
	Toward Hybrid Network Monitoring

	Related Work
	Packet-Level Monitoring with Selective Flow-Based Aggregation
	Packet Filter
	Monitoring Engine
	Flow Tracking
	Probabilistic Export Decision

	Record Exporter
	Template Records
	Packet-Level and Flow Records

	Open-Source Implementation of HybridMon
	Subsampling Strategy
	Monitored Features

	Evaluation of HybridMon
	Data Quality Assessment
	Packet Coverage
	Flow Coverage

	Monitoring Efficiency and Throughput
	Resource Efficiency
	Monitoring Capacity

	Detection and Mitigation of Attack Traffic
	Effectiveness for Intrusion Detection
	Installation of Filter Rules at Run-Time

	Use Case Evaluation: University Network Traces
	Performance Evaluation
	Functional Benefits

	Conclusion
	References

